Structural insights into the mechanism and inhibition of transglutaminase-induced ubiquitination by the Legionella effector MavC

[1]  Zhao‐Qing Luo,et al.  Legionella pneumophila regulates the activity of UBE2N by deamidase‐mediated deubiquitination , 2019, The EMBO journal.

[2]  Lei Song,et al.  Post-translational regulation of ubiquitin signaling , 2019, The Journal of cell biology.

[3]  P. Hollenbeck,et al.  Legionella pneumophila inhibits immune signaling via MavC-mediated transglutaminase-induced ubiquitination of UBE2N , 2018, Nature Microbiology.

[4]  X. Fang,et al.  Structural basis of ubiquitin modification by the Legionella effector SdeA , 2018, Nature.

[5]  Malene L Urbanus,et al.  Discovery of Ubiquitin Deamidases in the Pathogenic Arsenal of Legionella pneumophila. , 2018, Cell reports.

[6]  Zhao‐Qing Luo,et al.  Legionella and Coxiella effectors: strength in diversity and activity , 2017, Nature Reviews Microbiology.

[7]  D. Komander,et al.  Mechanisms of Deubiquitinase Specificity and Regulation. , 2017, Annual review of biochemistry.

[8]  R. Isberg,et al.  A Single Legionella Effector Catalyzes a Multistep Ubiquitination Pathway to Rearrange Tubular Endoplasmic Reticulum for Replication. , 2017, Cell host & microbe.

[9]  M. Lam,et al.  Diverse mechanisms of metaeffector activity in an intracellular bacterial pathogen, Legionella pneumophila , 2016, Molecular systems biology.

[10]  I. Matic,et al.  Phosphoribosylation of Ubiquitin Promotes Serine Ubiquitination and Impairs Conventional Ubiquitination , 2016, Cell.

[11]  M. Rapé,et al.  The increasing complexity of the ubiquitin code , 2016, Nature Cell Biology.

[12]  Zhao‐Qing Luo,et al.  Ubiquitination independent of E1 and E2 enzymes by bacterial effectors , 2016, Nature.

[13]  P. Brzovic,et al.  E2 enzymes: more than just middle men , 2016, Cell Research.

[14]  I. Dikic,et al.  Bacteria-host relationship: ubiquitin ligases as weapons of invasion , 2016, Cell Research.

[15]  Tal Pupko,et al.  Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires , 2016, Nature Genetics.

[16]  C. Das,et al.  Structural basis of substrate recognition by a bacterial deubiquitinase important for dynamics of phagosome ubiquitination , 2015, Proceedings of the National Academy of Sciences.

[17]  Yi-Han Lin,et al.  Host Cell-catalyzed S-Palmitoylation Mediates Golgi Targeting of the Legionella Ubiquitin Ligase GobX* , 2015, The Journal of Biological Chemistry.

[18]  Qs Wang,et al.  The macromolecular crystallography beamline of SSRF , 2015 .

[19]  Christopher M. Clouthier,et al.  Acyl transfer mechanisms of tissue transglutaminase. , 2014, Bioorganic chemistry.

[20]  Song Tan,et al.  Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome , 2014, Nature.

[21]  M. Smolka,et al.  The Legionella effector SidC defines a unique family of ubiquitin ligases important for bacterial phagosomal remodeling , 2014, Proceedings of the National Academy of Sciences.

[22]  C. Wolberger,et al.  E2 ubiquitin conjugating enzymes regulate the deubiquitinating activity of OTUB1 , 2013, Nature Structural &Molecular Biology.

[23]  R. Isberg,et al.  Poison Domains Block Transit of Translocated Substrates via the Legionella pneumophila Icm/Dot System , 2013, Infection and Immunity.

[24]  Y. He,et al.  Genome Sequence of an Environmental Isolate of the Bacterial Pathogen Legionella pneumophila , 2013, Genome Announcements.

[25]  J. Toth,et al.  The Cyclomodulin Cycle Inhibiting Factor (CIF) Alters Cullin Neddylation Dynamics* , 2013, The Journal of Biological Chemistry.

[26]  Alma L Burlingame,et al.  Substrates of IAP ubiquitin ligases identified with a designed orthogonal E3 ligase, the NEDDylator. , 2013, Molecular cell.

[27]  C. Khosla,et al.  Regulation of the activities of the mammalian transglutaminase family of enzymes , 2012, Protein science : a publication of the Protein Society.

[28]  Ting Li,et al.  Structural mechanism of ubiquitin and NEDD8 deamidation catalyzed by bacterial effectors that induce macrophage-specific apoptosis , 2012, Proceedings of the National Academy of Sciences.

[29]  F. Taieb,et al.  The molecular basis of ubiquitin-like protein NEDD8 deamidation by the bacterial effector protein Cif , 2012, Proceedings of the National Academy of Sciences.

[30]  F. Taieb,et al.  Cycle Inhibiting Factors (Cifs): Cyclomodulins That Usurp the Ubiquitin-Dependent Degradation Pathway of Host Cells , 2011, Toxins.

[31]  Zhao-Qing Luo,et al.  Comprehensive Identification of Protein Substrates of the Dot/Icm Type IV Transporter of Legionella pneumophila , 2011, PloS one.

[32]  H. Kanuka,et al.  Legionella Metaeffector Exploits Host Proteasome to Temporally Regulate Cognate Effector , 2010, PLoS pathogens.

[33]  She Chen,et al.  Glutamine Deamidation and Dysfunction of Ubiquitin/NEDD8 Induced by a Bacterial Effector Family , 2010, Science.

[34]  F. Taieb,et al.  Pathogenic Bacteria Target NEDD8-Conjugated Cullins to Hijack Host-Cell Signaling Pathways , 2010, PLoS pathogens.

[35]  R. Isberg,et al.  E3 Ubiquitin Ligase Activity and Targeting of BAT3 by Multiple Legionella pneumophila Translocated Substrates , 2010, Infection and Immunity.

[36]  M. Swanson,et al.  Inhibition of Host Vacuolar H+-ATPase Activity by a Legionella pneumophila Effector , 2010, PLoS pathogens.

[37]  M. Rapé,et al.  Building ubiquitin chains: E2 enzymes at work , 2009, Nature Reviews Molecular Cell Biology.

[38]  R. Isberg,et al.  NF-κB translocation prevents host cell death after low-dose challenge by Legionella pneumophila , 2006, The Journal of Experimental Medicine.

[39]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[40]  Zhao-Qing Luo,et al.  Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Robert M. Graham,et al.  Transglutaminases: crosslinking enzymes with pleiotropic functions , 2003, Nature Reviews Molecular Cell Biology.

[42]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .

[43]  Alexander Varshavsky,et al.  The ubiquitin system. , 1998, Annual review of biochemistry.

[44]  R. Isberg,et al.  Conjugative transfer by the virulence system of Legionella pneumophila. , 1998, Science.

[45]  H. Berendsen,et al.  Systematic analysis of domain motions in proteins from conformational change: New results on citrate synthase and T4 lysozyme , 1998, Proteins.

[46]  B. Fields,et al.  The molecular ecology of legionellae. , 1996, Trends in microbiology.

[47]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[48]  R. Isberg,et al.  Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila , 1993, Molecular microbiology.

[49]  W. Dowdle,et al.  Legionnaires' disease: isolation of a bacterium and demonstration of its role in other respiratory disease. , 1977, The New England journal of medicine.

[50]  X. Fang,et al.  Structural basis of ubiquitin modification by the Legionella effector SdeA , 2018, Nature.

[51]  H. Nagai,et al.  Modulation of the ubiquitination machinery by Legionella. , 2013, Current topics in microbiology and immunology.

[52]  M. Heidtman,et al.  The Legionella pneumophila replication vacuole: making a cosy niche inside host cells , 2009, Nature Reviews Microbiology.

[53]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.