A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells

[1]  Philip Schulz,et al.  Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability , 2018 .

[2]  N. Koch,et al.  Weak charge transfer between an acceptor molecule and metal surfaces enabling organic/metal energy level tuning. , 2006, The journal of physical chemistry. B.

[3]  E. Sanehira,et al.  High-Work-Function Molybdenum Oxide Hole Extraction Contacts in Hybrid Organic-Inorganic Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[4]  Aslihan Babayigit,et al.  Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite , 2015 .

[5]  Kai Zhu,et al.  Influence of Electrode Interfaces on the Stability of Perovskite Solar Cells: Reduced Degradation Using MoOx/Al for Hole Collection , 2016 .

[6]  Shenghao Wang,et al.  Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes , 2015 .

[7]  Wei Chen,et al.  Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells , 2017, Nature Communications.

[8]  Anders Hagfeldt,et al.  Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells , 2018 .

[9]  J. Y. Kim,et al.  Highly efficient perovskite solar cells based on mechanically durable molybdenum cathode , 2015 .

[10]  Anders Hagfeldt,et al.  Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture , 2018, Science.

[11]  Michael Grätzel,et al.  Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells , 2018, Nature Energy.

[12]  Kai Zhu,et al.  Towards stable and commercially available perovskite solar cells , 2016, Nature Energy.

[13]  Neha Arora,et al.  Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20% , 2017, Science.

[14]  Liduo Wang,et al.  Direct Evidence of Ion Diffusion for the Silver‐Electrode‐Induced Thermal Degradation of Inverted Perovskite Solar Cells , 2017 .

[15]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[16]  Leone Spiccia,et al.  A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. , 2014, Angewandte Chemie.

[17]  A. Jen,et al.  Ag-Incorporated Organic-Inorganic Perovskite Films and Planar Heterojunction Solar Cells. , 2017, Nano letters.

[18]  Jinsong Huang,et al.  Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime? , 2016 .

[19]  Wenjun Zhang,et al.  Effect of BCP buffer layer on eliminating charge accumulation for high performance of inverted perovskite solar cells , 2017 .

[20]  Lijun Zhang,et al.  Formation and Diffusion of Metal Impurities in Perovskite Solar Cell Material CH3NH3PbI3: Implications on Solar Cell Degradation and Choice of Electrode , 2017, Advanced science.

[21]  Nam-Gyu Park,et al.  Perovskite Solar Cells with Inorganic Electron‐ and Hole‐Transport Layers Exhibiting Long‐Term (≈500 h) Stability at 85 °C under Continuous 1 Sun Illumination in Ambient Air , 2018, Advanced materials.

[22]  Dong Wang,et al.  Low-Temperature Atomic Layer Deposition of Metal Oxide Layers for Perovskite Solar Cells with High Efficiency and Stability under Harsh Environmental Conditions. , 2018, ACS applied materials & interfaces.

[23]  A. Selskis,et al.  Cesium-Containing Triple Cation Perovskite Solar Cells , 2021, Coatings.

[24]  Anders Hagfeldt,et al.  Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells. , 2016, ACS nano.

[25]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[26]  C. Barrett,et al.  The crystal structure of Bi and of solid solutions of Pb, Sn, Sb and Te in Bi , 1962 .

[27]  Karl Leo,et al.  Improvement of Transparent Metal Top Electrodes for Organic Solar Cells by Introducing a High Surface Energy Seed Layer , 2013 .

[28]  M. Lejeune,et al.  Preferential orientation in bismuth thin films as a function of growth conditions , 2017 .

[29]  K. Meerholz,et al.  Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells , 2017, Nature Communications.

[30]  Tadaaki Nagao,et al.  Strong lateral growth and crystallization via two-dimensional allotropic transformation of semi-metal Bi film , 2005 .

[31]  B. Rand,et al.  Redox Chemistry Dominates the Degradation and Decomposition of Metal Halide Perovskite Optoelectronic Devices , 2016 .

[32]  Christoph J. Brabec,et al.  A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells , 2017, Science.

[33]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[34]  Jiansheng Jie,et al.  Metal Acetylacetonate Series in Interface Engineering for Full Low‐Temperature‐Processed, High‐Performance, and Stable Planar Perovskite Solar Cells with Conversion Efficiency over 16% on 1 cm2 Scale , 2017, Advanced materials.

[35]  G. Choppin,et al.  Bismuth(III) Iodide , 2007 .

[36]  Suren A. Gevorgyan,et al.  Consensus stability testing protocols for organic photovoltaic materials and devices , 2011 .

[37]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[38]  A. Jen,et al.  Fullerene-Anchored Core-Shell ZnO Nanoparticles for Efficient and Stable Dual-Sensitized Perovskite Solar Cells , 2019, Joule.

[39]  Chien,et al.  Large magnetoresistance of electrodeposited single-crystal bismuth thin films , 1999, Science.

[40]  Xingyuan Liu,et al.  Ultraviolet Luminescent, High‐Effective‐Work‐Function LaTiO3‐Doped Indium Oxide and Its Effects in Organic Optoelectronics , 2010, Advanced materials.

[41]  Rongrong Cheacharoen,et al.  Barrier Design to Prevent Metal-Induced Degradation and Improve Thermal Stability in Perovskite Solar Cells , 2018, ACS Energy Letters.

[42]  Peter Hacke,et al.  Enabling reliability assessments of pre-commercial perovskite photovoltaics with lessons learned from industrial standards , 2018, Nature Energy.

[43]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[44]  H. Michaelson The work function of the elements and its periodicity , 1977 .

[45]  Rongrong Cheacharoen,et al.  Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. , 2018, Chemical reviews.

[46]  Yi-bing Cheng,et al.  [6,6]-Phenyl-C61-Butyric Acid Methyl Ester/Cerium Oxide Bilayer Structure as Efficient and Stable Electron Transport Layer for Inverted Perovskite Solar Cells. , 2018, ACS nano.

[47]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[48]  Kwanghee Lee,et al.  Achieving long-term stable perovskite solar cells via ion neutralization , 2016 .

[49]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.