Controlling information in probalistic systems

Le controle de l'information emise par un systeme a vu son utilite grandir avec la multiplication des systemes communicants. Ce controle peut etre realise par exemple pour reveler une information du systeme, ou au contraire pour en dissimuler une. Le diagnostic notamment cherche a determiner, grâce a l'observation du systeme, si une faute a eu lieu au sein de celui-ci. Dans cette these, nous etablissons des bases formelles a l'analyse des problemes du diagnostic pour des modeles stochastiques. Nous etudions ensuite ces problemes dans plusieurs cadres (fini/infini, passif/actif).

[1]  Yannick Pencolé,et al.  Monitoring and Active Diagnosis for Discrete-Event Systems , 2009 .

[2]  Nathalie Bertrand,et al.  Accurate Approximate Diagnosability of Stochastic Systems , 2016, LATA.

[3]  Zhi Xu,et al.  The Computational Complexity of Universality Problems for Prefixes, Suffixes, Factors, and Subwords of Regular Languages , 2009, Fundam. Informaticae.

[4]  Christel Baier,et al.  A note on the attractor-property of infinite-state Markov chains , 2006, Inf. Process. Lett..

[5]  Krishnendu Chatterjee,et al.  Probabilistic opacity for Markov decision processes , 2014, Inf. Process. Lett..

[6]  Michel Diaz,et al.  Petri Nets: Fundamental Models, Verification and Applications , 2009 .

[7]  Stavros Tripakis,et al.  Fault Diagnosis with Static and Dynamic Observers , 2008, Fundam. Informaticae.

[8]  Farid Nouioua,et al.  A probabilistic analysis of diagnosability in discrete event systems , 2008, ECAI.

[9]  Emil L. Post A variant of a recursively unsolvable problem , 1946 .

[10]  Catuscia Palamidessi,et al.  Geo-indistinguishability: differential privacy for location-based systems , 2012, CCS.

[11]  Nathalie Bertrand,et al.  Active Diagnosis for Probabilistic Systems , 2014, FoSSaCS.

[12]  Kim Guldstrand Larsen,et al.  Specification and refinement of probabilistic processes , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[13]  Tadao Murata,et al.  Petri nets: Properties, analysis and applications , 1989, Proc. IEEE.

[14]  B. Nordstrom FINITE MARKOV CHAINS , 2005 .

[15]  H. Marchand,et al.  Supervision patterns in discrete event systems diagnosis , 2006, 2006 8th International Workshop on Discrete Event Systems.

[16]  Serge Haddad,et al.  Probabilistic Disclosure: Maximisation vs. Minimisation , 2017, FSTTCS.

[17]  Eric Fabre,et al.  Diagnosability degree of stochastic discrete event systems , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[18]  Rajeev Alur,et al.  Visibly pushdown languages , 2004, STOC '04.

[19]  Krishnendu Chatterjee,et al.  Model-Checking omega-Regular Properties of Interval Markov Chains , 2008, FoSSaCS.

[20]  Marcos K. Aguilera Stumbling over Consensus Research: Misunderstandings and Issues , 2010, Replication.

[21]  Patrice Moreaux,et al.  Asynchronous Composition of High Level Petri Nets: A Quantitative Approach , 1996, Application and Theory of Petri Nets.

[22]  Mahesh Viswanathan,et al.  Model-Checking Markov Chains in the Presence of Uncertainties , 2006, TACAS.

[23]  Francesco Basile,et al.  Overview of fault diagnosis methods based on Petri net models , 2014, 2014 European Control Conference (ECC).

[24]  Javier Esparza,et al.  Analyzing probabilistic pushdown automata , 2013, Formal Methods Syst. Des..

[25]  Stéphane Lafortune,et al.  Overview of fault diagnosis methods for Discrete Event Systems , 2013, Annu. Rev. Control..

[26]  Kousha Etessami,et al.  Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations , 2005, JACM.

[27]  K. Doi,et al.  Computer-aided diagnosis in radiology: potential and pitfalls. , 1999, European journal of radiology.

[28]  Moshe Y. Vardi An Automata-Theoretic Approach to Linear Temporal Logic , 1996, Banff Higher Order Workshop.

[29]  Nils Jansen,et al.  Counterexample Generation for Discrete-Time Markov Models: An Introductory Survey , 2014, SFM.

[30]  Carl A. Gunter,et al.  In handbook of theoretical computer science , 1990 .

[31]  Jane Hillston,et al.  A compositional approach to performance modelling , 1996 .

[32]  Alessandro Giua,et al.  Diagnosability of Discrete-Event Systems Using Labeled Petri Nets , 2014, IEEE Transactions on Automation Science and Engineering.

[33]  P. Moreaux,et al.  Evaluation of high level Petri nets by means of aggregation and decomposition , 1995, Proceedings 6th International Workshop on Petri Nets and Performance Models.

[34]  Sylvain Schmitz,et al.  The Complexity of Diagnosability and Opacity Verification for Petri Nets , 2017, Petri Nets.

[35]  Oleg Sokolsky,et al.  Counterfactual Causality from First Principles? , 2017, CREST@ETAPS.

[36]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[37]  Mariëlle Stoelinga,et al.  An Introduction to Probabilistic Automata , 2002, Bull. EATCS.

[38]  Sujeet Chand,et al.  Time templates for discrete event fault monitoring in manufacturing systems , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[39]  Krishnendu Chatterjee,et al.  Randomness for Free , 2010, MFCS.

[40]  Stéphane Lafortune,et al.  Predictability of event occurrences in partially-observed discrete-event systems , 2009, Autom..

[41]  Demosthenis Teneketzis,et al.  Active Acquisition of Information for Diagnosis and Supervisory Control of Discrete Event Systems , 2007, Discret. Event Dyn. Syst..

[42]  Olga Kouchnarenko,et al.  Preserving opacity on Interval Markov Chains under simulation , 2016, 2016 13th International Workshop on Discrete Event Systems (WODES).

[43]  R. Ash,et al.  Probability and measure theory , 1999 .

[44]  Alessandro Giua,et al.  A New Approach for Diagnosability Analysis of Petri Nets Using Verifier Nets , 2012, IEEE Transactions on Automatic Control.

[45]  Kousha Etessami,et al.  Model Checking of Recursive Probabilistic Systems , 2012, TOCL.

[46]  Serge Haddad,et al.  Optimal constructions for active diagnosis , 2013, J. Comput. Syst. Sci..

[47]  Stéphane Lafortune,et al.  Polynomial-time verification of diagnosability of partially observed discrete-event systems , 2002, IEEE Trans. Autom. Control..

[48]  Raja Sengupta,et al.  Diagnosability of discrete-event systems , 1995, IEEE Trans. Autom. Control..

[49]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[50]  Robin Milner,et al.  Handbook of Theoretical Computer Science (Vol. B) , 1990 .

[51]  Shengbing Jiang,et al.  A polynomial algorithm for testing diagnosability of discrete-event systems , 2001, IEEE Trans. Autom. Control..

[52]  Amit Sahai,et al.  On the (im)possibility of obfuscating programs , 2001, JACM.

[53]  Eitan M. Gurari,et al.  Introduction to the theory of computation , 1989 .

[54]  Stéphane Lafortune,et al.  Coordinated Decentralized Protocols for Failure Diagnosis of Discrete Event Systems , 2000, Discret. Event Dyn. Syst..

[55]  Alessandro Giua,et al.  Diagnosability of bounded Petri nets , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[56]  A. Prasad Sistla,et al.  Distinguishing Hidden Markov Chains * , 2015, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[57]  Juraj Hromkovic,et al.  On probabilistic pushdown automata , 2010, Inf. Comput..

[58]  Eric Fabre,et al.  Empowering self-diagnosis with self-modeling , 2012, 2012 8th international conference on network and service management (cnsm) and 2012 workshop on systems virtualiztion management (svm).

[59]  Ariane Piel,et al.  Reconnaissance de comportements complexes par traitement en ligne de flux d'événements. (Online event flow processing for complex behaviour recognition) , 2014 .

[60]  Karl Johan Åström,et al.  Optimal control of Markov processes with incomplete state information , 1965 .

[61]  S.-Y. Kuroda,et al.  Classes of Languages and Linear-Bounded Automata , 1964, Inf. Control..

[62]  Nathalie Bertrand,et al.  Foundation of Diagnosis and Predictability in Probabilistic Systems , 2014, FSTTCS.

[63]  Krishnendu Chatterjee,et al.  Qualitative Analysis of Partially-Observable Markov Decision Processes , 2009, MFCS.

[64]  Christoforos N. Hadjicostis,et al.  Current-State Opacity Formulations in Probabilistic Finite Automata , 2014, IEEE Transactions on Automatic Control.

[65]  Jean Goubault-Larrecq,et al.  Random Measurable Selections , 2014, Horizons of the Mind.

[66]  Mogens Nielsen,et al.  Decidability Issues for Petri Nets - a survey , 1994, Bull. EATCS.

[67]  Christel Baier,et al.  Stochastic Timed Automata , 2014, Log. Methods Comput. Sci..

[68]  Javier Esparza,et al.  Model checking probabilistic pushdown automata , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[69]  Alessandro Giua,et al.  Basis Coverability Graph for Partially Observable Petri Nets with Application to Diagnosability Analysis , 2018, Petri Nets.

[70]  Sophie Pinchinat,et al.  Diagnosability of Pushdown Systems , 2009, Haifa Verification Conference.

[71]  Thomas A. Henzinger,et al.  Equivalence of Labeled Markov Chains , 2008, Int. J. Found. Comput. Sci..

[72]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[73]  Nathalie Bertrand,et al.  Qualitative Determinacy and Decidability of Stochastic Games with Signals , 2009, 2009 24th Annual IEEE Symposium on Logic In Computer Science.

[74]  Maciej Koutny,et al.  Towards Quantitative Analysis of Opacity , 2012, TGC.

[75]  Olga Kouchnarenko,et al.  Opacity for linear constraint Markov chains , 2018, Discret. Event Dyn. Syst..

[76]  Nathalie Bertrand,et al.  Diagnosis in Infinite-State Probabilistic Systems , 2016, CONCUR.

[77]  Philippe Schnoebelen,et al.  Well-structured transition systems everywhere! , 2001, Theor. Comput. Sci..

[78]  Benoît Barbot Acceleration for statistical model checking. (Accélérations pour le model checking statistique) , 2014 .

[79]  Loïc Hélouët,et al.  Diagnosability of repairable faults , 2016, WODES.

[80]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[81]  Stefan Kiefer,et al.  On the total variation distance of labelled Markov chains , 2014, CSL-LICS.

[82]  Bruce G. Buchanan,et al.  The MYCIN Experiments of the Stanford Heuristic Programming Project , 1985 .

[83]  A. Prasad Sistla,et al.  Monitorability of Stochastic Dynamical Systems , 2011, CAV.

[84]  John N. Tsitsiklis,et al.  The Complexity of Markov Decision Processes , 1987, Math. Oper. Res..

[85]  Ufuk Topcu,et al.  Risk-averse control of Markov decision processes with ω-regular objectives , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[86]  Ye Wu,et al.  Testing and Quality Assurance for Component-Based Software , 2003 .

[87]  Paolo Ballarini,et al.  HASL: A new approach for performance evaluation and model checking from concepts to experimentation , 2015, Perform. Evaluation.

[88]  Jun Chen,et al.  Polynomial Test for Stochastic Diagnosability of Discrete-Event Systems , 2013, IEEE Transactions on Automation Science and Engineering.

[89]  Moshe Y. Vardi Probabilistic Linear-Time Model Checking: An Overview of the Automata-Theoretic Approach , 1999, ARTS.

[90]  Jun Chen,et al.  Stochastic Failure Prognosability of Discrete Event Systems , 2015, IEEE Transactions on Automatic Control.

[91]  Demosthenis Teneketzis,et al.  Diagnosability of stochastic discrete-event systems , 2005, IEEE Transactions on Automatic Control.

[92]  Hugo Gimbert,et al.  Probabilistic Automata on Finite Words: Decidable and Undecidable Problems , 2010, ICALP.

[93]  Charles Rackoff,et al.  The Covering and Boundedness Problems for Vector Addition Systems , 1978, Theor. Comput. Sci..

[94]  Anne Condon,et al.  On the undecidability of probabilistic planning and related stochastic optimization problems , 2003, Artif. Intell..

[96]  Dietmar Berwanger,et al.  On the Power of Imperfect Information , 2008, FSTTCS.

[97]  Mihalis Yannakakis,et al.  The complexity of probabilistic verification , 1995, JACM.

[98]  Christel Baier,et al.  Principles of model checking , 2008 .

[99]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.