A new channel-forming antibiotic from Streptomyces coelicolor A3(2) which requires calcium for its activity.
暂无分享,去创建一个
J H Lakey | J. Lakey | B. Rudd | D. Hopwood | D A Hopwood | E. Lea | E J Lea | B A Rudd | H M Wright | H. M. Wright
[1] B. Rudd,et al. Genetics of actinorhodin biosynthesis by Streptomyces coelicolor A3(2). , 1979, Journal of general microbiology.
[2] A. Finkelstein,et al. Aqueous pores created in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. , 1973, Membranes.
[3] D. E. Goldman. POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES , 1943, The Journal of general physiology.
[4] J. Beringer. R factor transfer in Rhizobium leguminosarum. , 1974, Journal of general microbiology.
[5] D. Hopwood. Genetic analysis and genome structure in Streptomyces coelicolor , 1967, Bacteriological reviews.
[6] H. Lardy,et al. A23187: a divalent cation ionophore. , 1972, The Journal of biological chemistry.
[7] E. Bamberg,et al. Temperature-dependent properties of gramicidin A channels. , 1974, Biochimica et biophysica acta.
[8] D. Hopwood. LINKAGE AND THE MECHANISM OF RECOMBINATION IN STREPTOMYCES COELICOLOR * , 1959, Annals of the New York Academy of Sciences.
[9] S. Waksman,et al. STREPTOMYCES COELICOLOR MÜLLER AND STREPTOMYCES VIOLACEORUBER WAKSMAN AND CURTIS, TWO DISTINCTLY DIFFERENT ORGANISMS , 1959, Journal of bacteriology.
[10] H. Ti Tien,et al. METHODS FOR THE FORMATION OF SINGLE BIMOLECULAR LIPID MEMBRANES IN AQUEOUS SOLUTION , 1963 .
[11] A. Hodgkin,et al. The effect of sodium ions on the electrical activity of the giant axon of the squid , 1949, The Journal of physiology.
[12] T. Hendriks,et al. Movement of calcium through artificial lipid membranes and the effects of ionophores. , 1975, Biochimica et biophysica acta.
[13] D. Hopwood,et al. Identification of the antibiotic determined by the SCP1 plasmid of Streptomyces coelicolor A3(2). , 1976, Journal of general microbiology.
[14] E. Bamberg,et al. Single channel conductance at lipid bilayer membranes in presence of monazomycin. , 1976, Biochimica et biophysica acta.
[15] L. Ermishkin,et al. Properties of amphotericin B channels in a lipid bilayer. , 1977, Biochimica et biophysica acta.
[16] J. Bangham,et al. The interaction of detergents with bilayer lipid membranes. , 1978, Biochimica et biophysica acta.
[17] S. Hladky,et al. Molecular Mechanisms of ION Transport in Lipid Membranes , 1974 .
[18] M. Okanishi,et al. Formation and reversion of Streptomycete protoplasts: cultural condition and morphological study. , 1974, Journal of general microbiology.
[19] A. Finkelstein,et al. Permeability and electrical properties of thin lipid membranes. , 1968, The Journal of general physiology.
[20] J. Sandblom,et al. Membrane potentials at zero current. The significance of a constant ionic permeability ratio. , 1967, Biophysical journal.
[21] G. Sermonti,et al. Genetic Recombination in Streptomyces , 1955, Nature.
[22] L. Stryer,et al. Simultaneous fluorescence and conductance studies of planar bilayer membranes containing a highly active and fluorescent analog of gramicidin A. , 1975, Journal of molecular biology.
[23] J. Collins,et al. THE EFFECT OF THE PLANT HORMONE ABSCISIC ACID ON LIPID BILAYER MEMBRANES , 1979 .
[24] R. Kirby,et al. Plasmid-determined antibiotic synthesis and resistance in Streptomyces coelicolor , 1975, Nature.
[25] D. Hopwood,et al. CDA is a new chromosomally-determined antibiotic from Streptomyces coelicolor A3(2). , 1983, Journal of general microbiology.
[26] A. Finkelstein,et al. The Ion Permeability Induced in Thin Lipid Membranes by the Polyene Antibiotics Nystatin and Amphotericin B , 1970, The Journal of general physiology.
[27] B. Rudd,et al. A pigmented mycelial antibiotic in Streptomyces coelicolor: control by a chromosomal gene cluster. , 1980, Journal of general microbiology.
[28] S. Hladky,et al. Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel. , 1972, Biochimica et biophysica acta.