Visualization as support to the extraction and exploration of association rules (Visualização como suporte à extração e exploração de regras de associação)

Since the definition of the association rule mining problem, many efficient algorithms have been introduced to deal with it. However, the problem still presents many practical difficulties to the miners, such as the determination of suitable minimum support and minimum confidence thresholds, manipulation of large rule sets, and comprehension of rules (specially those containing many items). In order to deal with these problems, researchers have been investigating the application of interactive techniques, sumarization (of rule sets) and visual representations. Nonetheless, no approach in which users can understand and control the process through interaction with the analytical algorithm along its execution has been introduced. We introduce an interactive approach to extract and explore association rules that inserts the user into the process through: interactive execution of the Apriori ; interactive selection of frequent itemsets; itemset-based and cluster-oriented extraction of rules; and pairwise exploration of rules. To validate the approach, several studies have been conducted, supported by the I2E System, aiming at: comparing the interactive approach, under several aspects, with a conventional approach to obtain association rules; evaluate the effect of different execution parameters in the final results; and illustrate its application in real situations and with real users. Results of these studies indicate that the approach is adequate, both in exploratory scenarios and in scenarios in which there is an initial guidance for the process, to the execution of certain association rule extraction tasks, because: it provides resources to avoid complete algorithm executions before

[1]  Alfred Inselberg,et al.  Multidimensional detective , 1997, Proceedings of VIZ '97: Visualization Conference, Information Visualization Symposium and Parallel Rendering Symposium.

[2]  Rosane Minghim,et al.  On Improved Projection Techniques to Support Visual Exploration of Multi-Dimensional Data Sets , 2003, Inf. Vis..

[3]  Gregory Piatetsky-Shapiro,et al.  The KDD process for extracting useful knowledge from volumes of data , 1996, CACM.

[4]  Dario Bruzzese,et al.  Combining visual techniques for Association Rules exploration , 2004, AVI.

[5]  Fabrice Guillet,et al.  Exploratory Visualization for Association Rule Rummaging , 2003, KDD 2003.

[6]  Matthew O. Ward,et al.  XmdvTool: integrating multiple methods for visualizing multivariate data , 1994, Proceedings Visualization '94.

[7]  Haim Levkowitz,et al.  An Environment and Studies for Exploring Auditory Representations of Multidimensional Data , 1995, Perceptual Issues in Visualization.

[8]  Gavriel Salvendy,et al.  Design and evaluation of visualization support to facilitate association rules modeling , 2006, Int. J. Hum. Comput. Interact..

[9]  Reda Alhajj,et al.  Visual interface for online watching of frequent itemset generation in Apriori and Eclat , 2005, Fourth International Conference on Machine Learning and Applications (ICMLA'05).

[10]  Robert Spence,et al.  Visualisation for functional design , 1995, Proceedings of Visualization 1995 Conference.

[11]  Fabrice Guillet,et al.  A User-Driven Process for Mining Association Rules , 2000, PKDD.

[12]  Manojit Sarkar,et al.  Graphical fisheye views , 1994, CACM.

[13]  Chaomei Chen,et al.  Empirical studies of information visualization: a meta-analysis , 2000, Int. J. Hum. Comput. Stud..

[14]  Herman Chernoff,et al.  The Use of Faces to Represent Points in k- Dimensional Space Graphically , 1973 .

[15]  Kate Smith-Miles,et al.  A New Approach of Eliminating Redundant Association Rules , 2004, DEXA.

[16]  Solange Oliveira Rezende,et al.  Support Vector Machine Classification of Probability Models and Peptide Features for Improved Peptide Identification from Shotgun Proteomics , 2007, Sixth International Conference on Machine Learning and Applications (ICMLA 2007).

[17]  Fabrice Guillet,et al.  Interactive visual exploration of association rules with rule-focusing methodology , 2007, Knowledge and Information Systems.

[18]  Ee-Peng Lim,et al.  CrystalClear: Active visualization of association rules , 2002 .

[19]  A. Buja,et al.  Prosection Views: Dimensional Inference through Sections and Projections , 1994 .

[20]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[21]  Ben Shneiderman,et al.  Tree-maps: a space-filling approach to the visualization of hierarchical information structures , 1991, Proceeding Visualization '91.

[22]  Haim Levkowitz,et al.  Least Square Projection: A Fast High-Precision Multidimensional Projection Technique and Its Application to Document Mapping , 2008, IEEE Transactions on Visualization and Computer Graphics.

[23]  Bart Goethals,et al.  On Supporting Interactive Association Rule Mining , 2000, DaWaK.

[24]  Girish Keshav Palshikar,et al.  Association Rules Mining Using Heavy Itemsets , 2005, COMAD.

[25]  Christian Hidber,et al.  Association Rule Mining , 2017 .

[26]  Georges G. Grinstein,et al.  Iconographic Displays For Visualizing Multidimensional Data , 1988, Proceedings of the 1988 IEEE International Conference on Systems, Man, and Cybernetics.

[27]  Rosane Minghim,et al.  Content-based text mapping using multi-dimensional projections for exploration of document collections , 2006, Electronic Imaging.

[28]  Gerd Stumme,et al.  Mining Minimal Non-redundant Association Rules Using Frequent Closed Itemsets , 2000, Computational Logic.

[29]  Maria Cristina Ferreira de Oliveira,et al.  Visualization to Assist the Generation and Exploration of Association Rules , 2009 .

[30]  Georges G. Grinstein,et al.  Table visualizations: a formal model and its applications , 2000 .

[31]  Heikki Mannila,et al.  Finding interesting rules from large sets of discovered association rules , 1994, CIKM '94.

[32]  Antony Unwin,et al.  The TwoKey Plot for Multiple Association Rules Control , 2001, PKDD.

[33]  Daniel A. Keim,et al.  Designing Pixel-Oriented Visualization Techniques: Theory and Applications , 2000, IEEE Trans. Vis. Comput. Graph..

[34]  Charu C. Aggarwal,et al.  Towards effective and interpretable data mining by visual interaction , 2002, SKDD.

[35]  Ryen W. White,et al.  Supporting exploratory search , 2006 .

[36]  Christos Faloutsos,et al.  FastMap: a fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets , 1995, SIGMOD '95.

[37]  Ben Shneiderman,et al.  Tree visualization with tree-maps: 2-d space-filling approach , 1992, TOGS.

[38]  Wilfred Ng,et al.  \delta-Tolerance Closed Frequent Itemsets , 2006, Sixth International Conference on Data Mining (ICDM'06).

[39]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery in Databases , 1996, AI Mag..

[40]  Engelbert Mephu Nguifo,et al.  A scalable association rule visualization towards displaying large amounts of knowledge , 2007, 2007 11th International Conference Information Visualization (IV '07).

[41]  Mohammed J. Zaki Mining Non-Redundant Association Rules , 2004, Data Min. Knowl. Discov..

[42]  Jaideep Srivastava,et al.  Selecting the right objective measure for association analysis , 2004, Inf. Syst..

[43]  Daniel A. Keim,et al.  Pixel bar charts: a new technique for visualizing large multi-attribute data sets without aggregation , 2001, IEEE Symposium on Information Visualization, 2001. INFOVIS 2001..

[44]  Amitava Datta,et al.  VisAR : A New Technique for Visualizing Mined Association Rules , 2005, ADMA.

[45]  Steven K. Feiner,et al.  Worlds within worlds: metaphors for exploring n-dimensional virtual worlds , 1990, UIST '90.

[46]  Catherine Plaisant,et al.  The challenge of information visualization evaluation , 2004, AVI.

[47]  Solange Oliveira Rezende,et al.  Obtaining and Evaluating Generalized Association Rules , 2007, ICEIS.

[48]  Matthew O. Ward,et al.  Exploring N-dimensional databases , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[49]  Steven K. Feiner,et al.  AutoVisual: rule-based design of interactive multivariate visualizations , 1993, IEEE Computer Graphics and Applications.

[50]  Howard J. Hamilton,et al.  Basic Association Rules , 2004, SDM.

[51]  Ben Shneiderman,et al.  Dynamic queries for visual information seeking , 1994, IEEE Software.

[52]  Philip S. Yu,et al.  A New Approach to Online Generation of Association Rules , 2001, IEEE Trans. Knowl. Data Eng..

[53]  Philip S. Yu,et al.  Online generation of association rules , 1998, Proceedings 14th International Conference on Data Engineering.

[54]  Daniel A. Keim,et al.  Hierarchical Pixel Bar Charts , 2002, IEEE Trans. Vis. Comput. Graph..

[55]  Jock D. Mackinlay,et al.  The perspective wall: detail and context smoothly integrated , 1991, CHI.

[56]  Alípio Mário Jorge Hierarchical Clustering for Thematic Browsing and Summarization of Large Sets of Association Rules , 2004, SDM.

[57]  Hans-Peter Kriegel,et al.  VisDB: database exploration using multidimensional visualization , 1994, IEEE Computer Graphics and Applications.

[58]  Li Yang,et al.  Visualizing Frequent Itemsets, Association Rules, and Sequential Patterns in Parallel Coordinates , 2003, ICCSA.

[59]  Solange Oliveira Rezende,et al.  Combining Quality Measures to Identify Interesting Association Rules , 2004, IBERAMIA.

[60]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[61]  Wilfred Ng,et al.  Effective elimination of redundant association rules , 2007, Data Mining and Knowledge Discovery.

[62]  Gerd Stumme,et al.  Generating a Condensed Representation for Association Rules , 2005, Journal of Intelligent Information Systems.

[63]  Bart Goethals,et al.  A priori versus a posteriori filtering of association rules , 1999, 1999 ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.

[64]  Andrew Stranieri,et al.  Visualizing association rules for feedback within the legal system , 2003, ICAIL.

[65]  Hans-Peter Kriegel,et al.  'Circle Segments': A Technique for Visually Exploring Large Multidimensional Data Sets , 1996 .

[66]  Haim Levkowitz,et al.  Color icons-merging color and texture perception for integrated visualization of multiple parameters , 1991, Proceeding Visualization '91.

[67]  Fabrice Guillet,et al.  A user-driven and quality-oriented visualization for mining association rules , 2003, Third IEEE International Conference on Data Mining.

[68]  Alfred Inselberg,et al.  Parallel coordinates for visualizing multi-dimensional geometry , 1987 .

[69]  Fabrice Guillet,et al.  A 2D-3D visualization support for human-centered rule mining , 2007, Comput. Graph..

[70]  Marzena Kryszkiewicz,et al.  Representative Association Rules and Minimum Condition Maximum Consequence Association Rules , 1998, PKDD.

[71]  Daniel A. Keim,et al.  Information Visualization and Visual Data Mining , 2002, IEEE Trans. Vis. Comput. Graph..

[72]  Hans-Peter Kriegel,et al.  Recursive pattern: a technique for visualizing very large amounts of data , 1995, Proceedings Visualization '95.

[73]  Daniel Asimov,et al.  The grand tour: a tool for viewing multidimensional data , 1985 .

[74]  William S. Cleveland,et al.  Visualizing Data , 1993 .

[75]  Jock D. Mackinlay,et al.  Cone Trees: animated 3D visualizations of hierarchical information , 1991, CHI.

[76]  Haim Levkowitz,et al.  From Visual Data Exploration to Visual Data Mining: A Survey , 2003, IEEE Trans. Vis. Comput. Graph..

[77]  Sharma Chakravarthy,et al.  Visualization of association rules over relational DBMSs , 2003, SAC '03.

[78]  José Rouillard,et al.  An Interactive Approach to Display Large Sets of Association Rules , 2007, HCI.

[79]  Hans-Peter Kriegel,et al.  Visualization Techniques for Mining Large Databases: A Comparison , 1996, IEEE Trans. Knowl. Data Eng..

[80]  Heike Hofmann,et al.  Visualizing association rules with interactive mosaic plots , 2000, KDD '00.

[81]  Marti A. Hearst TileBars: visualization of term distribution information in full text information access , 1995, CHI '95.

[82]  Rosane Minghim,et al.  Text Map Explorer: a Tool to Create and Explore Document Maps , 2006, Tenth International Conference on Information Visualisation (IV'06).

[83]  Maria Cristina Ferreira de Oliveira,et al.  Including the user in the knowledge discovery loop: interactive itemset-driven rule extraction , 2008, SAC '08.

[84]  Philip S. Yu,et al.  Mining Large Itemsets for Association Rules , 1998, IEEE Data Eng. Bull..

[85]  Pak Chung Wong,et al.  Visualizing association rules for text mining , 1999, Proceedings 1999 IEEE Symposium on Information Visualization (InfoVis'99).

[86]  Ayhan Demiriz,et al.  A Framework for Visualizing Association Mining Results , 2006, ISCIS.

[87]  Ioannis Kopanakis,et al.  Visual data mining modeling techniques for the visualization of mining outcomes , 2003, J. Vis. Lang. Comput..

[88]  Jeff Beddow,et al.  Shape coding of multidimensional data on a microcomputer display , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[89]  Ramana Rao,et al.  A focus+context technique based on hyperbolic geometry for visualizing large hierarchies , 1995, CHI '95.

[90]  Ramakrishnan Srikant,et al.  Mining generalized association rules , 1995, Future Gener. Comput. Syst..