Multiscale Analysis of Fracture of Carbon Nanotubes Embedded in Composites

[1]  K. Hwang,et al.  Defect nucleation in carbon nanotubes under tension and torsion: Stone–Wales transformation , 2004 .

[2]  H. Fukunaga,et al.  Prediction of elastic properties of carbon nanotube reinforced composites , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  Huajian Gao,et al.  The Effect of Nanotube Waviness and Agglomeration on the Elastic Property of Carbon Nanotube-Reinforced Composites , 2004 .

[4]  A. Roy,et al.  Effective elastic moduli of nanocomposites with prescribed random orientation of nanofibers , 2004 .

[5]  K. Hwang,et al.  Critical Evaluation of the Stiffening Effect of Carbon Nanotubes in Composites , 2004 .

[6]  B. Sheldon,et al.  Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites , 2004 .

[7]  Huajian Gao,et al.  The effect of nanotube radius on the constitutive model for carbon nanotubes , 2003 .

[8]  N. Ghoniem,et al.  Multiscale modelling of nanomechanics and micromechanics: an overview , 2003 .

[9]  Tongxi Yu,et al.  Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes , 2003 .

[10]  Ronald E. Miller,et al.  Atomistic/continuum coupling in computational materials science , 2003 .

[11]  M. Panhuis,et al.  Selective Interaction in a Polymer−Single-Wall Carbon Nanotube Composite , 2003 .

[12]  Huajian Gao,et al.  Fracture Nucleation in Single-Wall Carbon Nanotubes Under Tension: A Continuum Analysis Incorporating Interatomic Potentials , 2002 .

[13]  Frank T. Fisher,et al.  Effects of nanotube waviness on the modulus of nanotube-reinforced polymers , 2002 .

[14]  Philippe H. Geubelle,et al.  The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials , 2002 .

[15]  Donald R Paul,et al.  Rheological behavior of multiwalled carbon nanotube/polycarbonate composites , 2002 .

[16]  Gregory M. Odegard,et al.  Constitutive Modeling of Nanotube-Reinforced Polymer Composites , 2002 .

[17]  C. Q. Ru,et al.  Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium , 2001 .

[18]  P. Poulin,et al.  Macroscopic fibers and ribbons of oriented carbon nanotubes. , 2000, Science.

[19]  Elizabeth C. Dickey,et al.  Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites , 2000 .

[20]  Angel Rubio,et al.  Single‐Walled Carbon Nanotube–Polymer Composites: Strength and Weakness , 2000 .

[21]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[22]  Robert C. Haddon,et al.  Nanotube composite carbon fibers , 1999 .

[23]  G. Tibbetts,et al.  Mechanical properties of vapor-grown carbon fiber composites with thermoplastic matrices , 1999 .

[24]  Otto Zhou,et al.  Deformation of carbon nanotubes in nanotube–polymer composites , 1999 .

[25]  O. Lourie,et al.  Evidence of stress transfer and formation of fracture clusters in carbon nanotube-based composites , 1999 .

[26]  Linda S. Schadler,et al.  LOAD TRANSFER IN CARBON NANOTUBE EPOXY COMPOSITES , 1998 .

[27]  M. Nardelli,et al.  Brittle and Ductile Behavior in Carbon Nanotubes , 1998 .

[28]  H. Wagner,et al.  Buckling and Collapse of Embedded Carbon Nanotubes , 1998 .

[29]  Reshef Tenne,et al.  Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix , 1998 .

[30]  Boris I. Yakobson,et al.  Mechanical relaxation and “intramolecular plasticity” in carbon nanotubes , 1998 .

[31]  M. Nardelli,et al.  MECHANISM OF STRAIN RELEASE IN CARBON NANOTUBES , 1998 .

[32]  Ronald E. Miller,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[33]  Boris I. Yakobson,et al.  High strain rate fracture and C-chain unraveling in carbon nanotubes , 1997 .

[34]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[35]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[36]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[37]  Rodney Hill,et al.  Theory of mechanical properties of fibre-strengthened materials—III. self-consistent model , 1965 .

[38]  Rodney Hill,et al.  Theory of mechanical properties of fibre-strengthened materials: I. Elastic behaviour , 1964 .

[39]  Yijun Liu,et al.  Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element , 2003 .

[40]  P C P Watts,et al.  Behaviours of embedded carbon nanotubes during film cracking , 2003 .

[41]  J. Fattebert,et al.  Mechanical properties, defects and electronic behavior of carbon nanotubes , 2000 .

[42]  Boris I. Yakobson,et al.  FULLERENE NANOTUBES : C1,000,000 AND BEYOND , 1997 .

[43]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[44]  M. Dresselhaus Carbon nanotubes , 1995 .

[45]  George J. Weng,et al.  Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions , 1984 .

[46]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[47]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .