Effects of rapid thermal annealing on optical properties of p-doped and undoped InAs/InGaAs dots-in-a-well structures

Postgrowth rapid thermal annealing was used to investigate the intermixing and structural changes in p-doped and undoped InAs/In0.1Ga0.9As dots-in-a-well (DWELL) structures grown by molecular beam epitaxy. Interdiffusion of In and Ga atoms caused by thermal annealing was proven from photoluminescence (PL) measurements, where blueshifts of the energy peaks were observed. The results show that p-doped quantum dot (QD) structures are more resistant to intermixing with higher thermal energy onset, and the reason is explained as the suppressed Ga diffusion resulted from the Be dopant. Rapid quenching of the integrated PL intensity at high temperature was observed in both undoped and p-doped DWELL QDs. Good agreement was obtained by fitting the integrated PL profile using two nonradiative recombination mechanisms, resulting in two activation energies that correspond to loss of carriers to nonradiative centers.

[1]  Q. Cao,et al.  Narrow ridge waveguide high power single mode 1.3-μm InAs/InGaAs ten-layer quantum dot lasers , 2007, Nanoscale Research Letters.

[2]  S. Yoon,et al.  Rate equation model of the negative characteristic temperature of InAs∕GaAs quantum dot lasers , 2007 .

[3]  Y. Arakawa,et al.  Effects of rapid thermal annealing on the emission properties of highly uniform self-assembled InAs∕GaAs quantum dots emitting at 1.3μm , 2007 .

[4]  Hui Li,et al.  Low transparency current density and high temperature operation from ten-layer p-doped 1.3 μm InAs/InGaAs/GaAs quantum dot lasers , 2007 .

[5]  Z.Z. Sun,et al.  Self-assembled GaInNAs/GaAsN quantum dot lasers: solid source molecular beam epitaxy growth and high-temperature operation , 2006, Nanoscale Research Letters.

[6]  James C. M. Hwang,et al.  Group-III vacancy induced InxGa1-xAs quantum dot interdiffusion , 2006 .

[7]  Boon S. Ooi,et al.  Group-III intermixing in InAs∕InGaAlAs quantum dots-in-well , 2006 .

[8]  H. S. Djie,et al.  Electronics states of interdiffused quantum dots , 2005 .

[9]  Mikhail V. Maximov,et al.  High power temperature-insensitive 1.3 µm InAs/InGaAs/GaAs quantum dot lasers , 2005 .

[10]  H. Tan,et al.  Impurity free vacancy disordering of InGaAs quantum dots , 2004 .

[11]  David T. D. Childs,et al.  1.3 µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density , 2004 .

[12]  Jin Dong Song,et al.  Interdiffusion and structural change in an InGaAs dots-in-a-well structure by rapid thermal annealing , 2004 .

[13]  Y. Arakawa,et al.  Improvement of the uniformity of self-assembled InAs quantum dots grown on InGaAs /GaAs by low-pressure metalorganic chemical vapor deposition , 2004 .

[14]  D. Bimberg Quantum dots for lasers, amplifiers and computing , 2003, CLEO/Pacific Rim 2003. The 5th Pacific Rim Conference on Lasers and Electro-Optics (IEEE Cat. No.03TH8671).

[15]  Soo Jin Chua,et al.  Temperature-dependent photoluminescence of GaInP/AlGaInP multiple quantum well laser structure grown by metalorganic chemical vapor deposition with tertiarybutylarsine and tertiarybutylphosphine , 2003 .

[16]  R. Murray,et al.  Temperature and excitation density dependence of the photoluminescence from annealed InAs/GaAs quantum dots , 2003 .

[17]  E. Gombia,et al.  Be diffusion in molecular beam epitaxy-grown GaAs structures , 2003 .

[18]  H. Tan,et al.  Suppression of interdiffusion in InGaAs/GaAs quantum dots using dielectric layer of titanium dioxide , 2003 .

[19]  Mikhail V. Maximov,et al.  InAs/InGaAs/GaAs quantum dot lasers of 1.3 /spl mu/m range with high (88%) differential efficiency , 2002 .

[20]  J. Jasinski,et al.  Post-growth thermal treatment of self-assembled InAs/GaAs quantum dots , 2002 .

[21]  Dennis G. Deppe,et al.  1.3 μm InAs quantum dot laser with To=161 K from 0 to 80 °C , 2002 .

[22]  A. Stintz,et al.  High-performance InAs quantum-dot lasers near 1.3 μm , 2001 .

[23]  A. C. Bryce,et al.  Selective control of self-organized In0.5Ga0.5As/GaAs quantum dot properties: Quantum dot intermixing , 2000 .

[24]  D. Deppe,et al.  Temperature dependence of gain saturation in multilevel quantum dot lasers , 2000, IEEE Journal of Quantum Electronics.

[25]  P. Koenraad,et al.  Evidence for strain in and around InAs quantum dots in GaAs from ion-channeling experiments , 2000 .

[26]  Mikhail V. Maximov,et al.  Long-wavelength lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates , 1999 .

[27]  C. H. Wang,et al.  Widely tunable intersubband energy spacing of self-assembled InAs/GaAs quantum dots due to interface intermixing , 1999 .

[28]  A. Stintz,et al.  Optical characteristics of 1.24-μm InAs quantum-dot laser diodes , 1999, IEEE Photonics Technology Letters.

[29]  M. Pate,et al.  Tuning self-assembled InAs quantum dots by rapid thermal annealing , 1997 .

[30]  U. Gösele,et al.  Diffusion mechanism of zinc and beryllium in gallium arsenide , 1991 .

[31]  Ulrich Gösele,et al.  Diffusion of zinc in gallium arsenide: A new model , 1981 .

[32]  John H. Marsh,et al.  Effect of p and n doping on neutral impurity and dielectric cap induced quantum well intermixing in GaAs/AlGaAs structures , 1997 .

[33]  C. Jagadish,et al.  Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots , 1996 .