Isolation of titania nanoparticles in monolithic ultraporous alumina: Effect of nanoparticle aggregation on anatase phase stability and photocatalytic activity
暂无分享,去创建一个
M. Bouslama | Andrei Kanaev | J.-L. Vignes | M. C. Amamra | Ovidiu Brinza | M. Abderrabba | Siteng Tieng | K. Chhor
[1] M. Zorn,et al. Photocatalytic oxidation of ketones in the gas phase over TiO2 thin films: a kinetic study on the influence of water vapor , 2003 .
[2] J. Bolton,et al. Photocatalytic Efficiency Variability in TiO2 Particles , 1995 .
[3] J. Banfield,et al. UNDERSTANDING POLYMORPHIC PHASE TRANSFORMATION BEHAVIOR DURING GROWTH OF NANOCRYSTALLINE AGGREGATES: INSIGHTS FROM TIO2 , 2000 .
[4] J. Banfield,et al. Thermodynamic analysis of phase stability of nanocrystalline titania , 1998 .
[5] H. Myers,et al. Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer , 1957 .
[6] J. Rouchaud,et al. Ultraporous monoliths of alumina prepared at room temperature by aluminium oxidation , 2008 .
[7] J. Bocquet,et al. Stability and Growth of Titanium-oxo-alkoxy TixOy(OiPr)z Clusters , 2007 .
[8] Kimihisa Yamamoto,et al. Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates. , 2008, Nature nanotechnology.
[9] D. Bahnemann,et al. Optical density and photonic efficiency of silica-supported TiO2 photocatalysts. , 2006, Water research.
[10] Jackie Y. Ying,et al. Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts , 1998 .
[11] A. Casalot,et al. Titane à valence mixte, un nouvel oxyde ternaire: Al2Ti7O15 , 1988 .
[12] Sean C. Smith,et al. Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity. , 2010, Chemical communications.
[13] A. Kanaev,et al. Sol–Gel Reactor With Rapid Micromixing: Modelling and Measurements of Titanium Oxide Nano-particle Growth , 2005 .
[14] C. Rao. KINETICS AND THERMODYNAMICS OF THE CRYSTAL STRUCTURE TRANSFORMATION OF SPECTROSCOPICALLY PURE ANATASE TO RUTILE , 1961 .
[15] A. Sclafani,et al. Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions , 1996 .
[16] J. Bocquet,et al. Nano-TiO2 sols immobilized on porous silica as new efficient photocatalyst , 2007 .
[17] Yiming Xu,et al. Evaluating Intrinsic Photocatalytic Activities of Anatase and Rutile TiO2 for Organic Degradation in Water , 2010 .
[18] J. Bocquet,et al. Elaboration of pure and doped TiO2 nanoparticles in sol-gel reactor with turbulent micromixing: Application to nanocoatings and photocatalysis , 2010 .
[19] A. Navrotsky. Energetics of nanoparticle oxides: interplay between surface energy and polymorphism† , 2003, Geochemical transactions.
[20] N. Serpone,et al. Photocatalysis: Fundamentals and Applications , 1989 .
[21] C. Ni,et al. Size dependence of thermal stability of TiO2 nanoparticles , 2004 .
[22] J. Jortner. Cluster size effects , 1992 .
[23] C. Sanchez,et al. Quantum size effect in TiO2 nanoparticles: does it exist? , 2000 .
[24] A. Fujishima,et al. TiO2 Photocatalysis: A Historical Overview and Future Prospects , 2005 .
[25] J. Banfield,et al. Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2 , 1997 .