THE INTERACTION OF CHEMICAL BONDS. III: PERTURBED STRICTLY LOCALIZED GEMINALS IN LMO BASIS

The formalism of strictly localized geminals (SLGs) is summarized. It is shown that the SLG wave function serves as an appropriate multiconfigurational reference state that can easily be improved by perturbational, CI- or coupled cluster-type procedures. The possibility of expanding the geminals in the basis set of localized Hartree-Fock molecular orbitals (LMOs) is discussed. Sample calculations on H4, CH4, H2O, and He…He systems are reported. © 1994 John Wiley & Sons, Inc.

[1]  K. Ruedenberg,et al.  Electron Correlation and Augmented Separated‐Pair Expansion , 1968 .

[2]  Péter R. Surján,et al.  Localization and delocalization: Distinction between through space and through bond interactions , 1982 .

[3]  I. R. eggen Electron correlation described by extended geminal models , 1988 .

[4]  J. P. Malrieu,et al.  Commentationes Localized Bond Orbitals and the Correlation Problem I. The Perturbation Calculation of the Ground State Energy , 1969 .

[5]  E. Kapuy Calculation of the π-electron correlation energy of butadiene using the extended separated pair theory , 1969 .

[6]  K. Ruedenberg,et al.  Electron Correlation and Separated Pair Approximation in Diatomic Molecules. II. Lithium Hydride and Boron Hydride , 1970 .

[7]  Per-Olov Löwdin,et al.  Note on the Separability Theorem for Electron Pairs , 1961 .

[8]  Raymond A. Poirier,et al.  The application of strictly localized geminals to the description of chemical bonds , 1987 .

[9]  Kimihiko Hirao,et al.  State-specific multireference Møller—Plesset perturbation treatment for singlet and triplet excited states, ionized states and electron attached states of H2O , 1993 .

[10]  M. Raimondi,et al.  The spin-coupled valence bond theory of molecular electronic structure. I. Basic theory and application to the 2Σ+ states of BeH , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[11]  B. Kirtman Density matrix treatment of localized electronic interactions. Separated electron pairs , 1983 .

[12]  E. Kapuy Density matrices for wave functions built up from non-orthogonal two-electron orbitals , 1959 .

[13]  C. Valdemoro Theory and Practice of the Spin-Adapted Reduced Hamiltonians (SRH) , 1987 .

[14]  O. Sǐnanoğlu,et al.  MANY-ELECTRON THEORY OF ATOMS AND MOLECULES. I. SHELLS, ELECTRON PAIRS VS MANY-ELECTRON CORRELATIONS , 1962 .

[15]  Kimihiko Hirao,et al.  Multireference Møller—Plesset perturbation theory for high-spin open-shell systems , 1992 .

[16]  C. Vergani,et al.  GF calculation with minimal and extended basis sets for H2O, NH3, CH4 and H2O2 , 1969 .

[17]  Peter Pulay,et al.  Fourth‐order Mo/ller–Plessett perturbation theory in the local correlation treatment. I. Method , 1987 .

[18]  Kimihiko Hirao,et al.  Multireference Møller–Plesset perturbation treatment of potential energy curve of N2 , 1992 .

[19]  Werner Kutzelnigg,et al.  Direct Determination of Natural Orbitals and Natural Expansion Coefficients of Many‐Electron Wavefunctions. I. Natural Orbitals in the Geminal Product Approximation , 1964 .

[20]  P. Surján,et al.  Delocalization corrections to the strictly localized molecular orbitals: A linearized SCF approximation , 1981 .

[21]  Valdemoro Spin-adapted reduced Hamiltonian. I. Elementary excitations. , 1985, Physical review. A, General physics.

[22]  J. Bigeleisen,et al.  VAPOR PRESSURES OF THE NEON ISOTOPES , 1960 .

[23]  I. Røeggen An energy decomposition analysis of intermolecular interactions , 1992 .

[24]  P. Fantucci,et al.  Direct energy minimization of self-consistent electron pair by an orthogonal transformation of the basis , 1981 .

[25]  Peter Pulay,et al.  Generalized Mo/ller–Plesset perturbation theory: Second order results for two‐configuration, open‐shell excited singlet, and doublet wave functions , 1989 .

[26]  M. Girardeau Second quantization for composite particles, reactive collisions, and unstable particles , 1980 .

[27]  H. Fukutome,et al.  Projected BCS Tamm-Dancoff method for molecular electronic structures , 1983 .

[28]  Peter Pulay,et al.  Consistent generalization of the Møller-Plesset partitioning to open-shell and multiconfigurational SCF reference states in many-body perturbation theory , 1987 .

[29]  David M. Silver,et al.  Electron Correlation and Separated Pair Approximation in Diatomic Molecules. I. Theory , 1970 .

[30]  Second-quantization representation and diagrammatic technique for systems of composite particles , 1982 .

[31]  E. Kapuy Extension of the separated pair theory , 1966 .

[32]  M. Raimondi,et al.  AB initio valence bond theory , 1985 .

[33]  Martin Karplus,et al.  Convergence of the valence-bond calculation for methane , 1977 .

[34]  I. Røeggen Electron correlation described by extended geminal models: The EXGEM4 and EXGEM5 models , 1987 .

[35]  W. Kutzelnigg Die Lösung des quantenmechanischen Zwei-Elektronenproblems durch unmittelbare Bestimmung der natürlichen Einelektronenfunktionen , 1963 .

[36]  J. H. van Lenthe,et al.  The valence‐bond self‐consistent field method (VB–SCF): Theory and test calculations , 1983 .

[37]  Péter R. Surján,et al.  Localization and delocalization. II. Role of overlap in interbond interactions , 1984 .

[38]  S. F. Boys Construction of Some Molecular Orbitals to Be Approximately Invariant for Changes from One Molecule to Another , 1960 .

[39]  R. Mcweeny,et al.  The Theory of Pair-Correlated Wave Functions , 1966 .

[40]  Robert G. Parr,et al.  Theory of Separated Electron Pairs , 1958 .

[41]  I. R. eggen Derivation of an extended geminal model , 1983 .

[42]  Thomas L. Allen,et al.  The Chemical Bond in Molecular Quantum Mechanics , 1961 .

[43]  E. Kapuy Calculation of the energy expression in case of a wave function built up from two electron orbits , 1958 .

[44]  E. Kapuy Application of the extended separated pair theory to the π-electrons of trans-butadiene without zero differential overlap approximation , 1968 .

[45]  Tadashi Arai,et al.  Theorem on Separability of Electron Pairs , 1960 .

[46]  R. Mcweeny,et al.  Self‐Consistent Group Calculations on Polyatomic Molecules. I. Basic Theory with an Application to Methane , 1965 .

[47]  Kimihiko Hirao,et al.  Multireference Møller-Plesset method , 1992 .

[48]  K. Ruedenberg,et al.  Electron Correlation and Separated Pair Approximation in Diatomic Molecules. III. Imidogen , 1970 .

[49]  W. Luken Localized orbitals and the theory of separated pairs , 1983 .