Magnetic resonance imaging of brain cell water

[1]  C. Geula,et al.  Variations in Acetylcholinesterase Activity within Human Cortical Pyramidal Neurons Across Age and Cognitive Trajectories , 2018, Cerebral cortex.

[2]  Jens Frahm,et al.  Model‐based T1 mapping with sparsity constraints using single‐shot inversion‐recovery radial FLASH , 2018, Magnetic resonance in medicine.

[3]  Takashi Watanabe,et al.  Amide proton signals as pH indicator for in vivo MRS and MRI of the brain—Responses to hypercapnia and hypothermia , 2016, NeuroImage.

[4]  Zhengguo Tan,et al.  Advances in real-time phase-contrast flow MRI and multi-echo radial FLASH , 2016 .

[5]  M. Mather,et al.  Neuromelanin marks the spot: identifying a locus coeruleus biomarker of cognitive reserve in healthy aging , 2016, Neurobiology of Aging.

[6]  Jens Frahm,et al.  Single-shot multi-slice T1 mapping at high spatial resolution – Inversion-recovery FLASH with radial undersampling and iterative reconstruction. , 2015 .

[7]  K. Double,et al.  Using Sepia melanin as a PD model to describe the binding characteristics of neuromelanin – A critical review , 2015, Journal of Chemical Neuroanatomy.

[8]  G. Eichele,et al.  Ear2 Deletion Causes Early Memory and Learning Deficits in APP/PS1 Mice , 2014, The Journal of Neuroscience.

[9]  Jens Frahm,et al.  Cell layers and neuropil: contrast‐enhanced MRI of mouse brain in vivo , 2013, NMR in biomedicine.

[10]  Takashi Watanabe,et al.  Myelin mapping in the central nervous system of living mice using contrast-enhanced magnetization transfer MRI , 2012, NeuroImage.

[11]  Evan W. Miller,et al.  Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and X-ray fluorescence microscopy , 2011, Proceedings of the National Academy of Sciences.

[12]  A. Hubbard,et al.  Copper handling machinery of the brain. , 2010, Metallomics : integrated biometal science.

[13]  Jeff H. Duyn,et al.  Susceptibility contrast in high field MRI of human brain as a function of tissue iron content , 2009, NeuroImage.

[14]  Dylan W Domaille,et al.  Metals in neurobiology: probing their chemistry and biology with molecular imaging. , 2008, Chemical reviews.

[15]  Shawn Mikula,et al.  Internet-enabled high-resolution brain mapping and virtual microscopy , 2007, NeuroImage.

[16]  Yasuo Terayama,et al.  Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson's disease , 2006, Neuroreport.

[17]  G. Eichele,et al.  Abnormal development of the locus coeruleus in Ear2(Nr2f6)-deficient mice impairs the functionality of the forebrain clock and affects nociception. , 2005, Genes & development.

[18]  A. Craig,et al.  NMDA Receptor Activation Mediates Copper Homeostasis in Hippocampal Neurons , 2005, The Journal of Neuroscience.

[19]  R. Muller,et al.  Relaxation induced by ferritin: a better understanding for an improved MRI iron quantification , 2004, NMR in biomedicine.

[20]  Alberto Gatti,et al.  The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Oliver Natt,et al.  In vivo 3D MRI staining of the mouse hippocampal system using intracerebral injection of MnCl2 , 2004, NeuroImage.

[22]  J. Frahm,et al.  Magnetization transfer MRI of mouse brain reveals areas of high neural density. , 2003, Magnetic resonance imaging.

[23]  J. Heyder,et al.  Respiratory mechanics in mice: strain and sex specific differences. , 2002, Acta physiologica Scandinavica.

[24]  Scott W. Atlas,et al.  Magnetic Resonance Imaging of the Brain and Spine , 1991 .

[25]  R. Henkelman,et al.  Magnetization transfer in MRI: a review , 2001, NMR in biomedicine.

[26]  N. Gelman,et al.  Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: Relation to estimated iron and water contents , 2001, Magnetic resonance in medicine.

[27]  Y. Ben-Ari,et al.  Kainate, a double agent that generates seizures: two decades of progress , 2000, Trends in Neurosciences.

[28]  S. Holland,et al.  NMR relaxation times in the human brain at 3.0 tesla , 1999, Journal of magnetic resonance imaging : JMRI.

[29]  R A Brooks,et al.  Iron uptake by ferritin: NMR relaxometry studies at low iron loads. , 1998, Journal of inorganic biochemistry.

[30]  P. Riederer,et al.  In Vitro Studies of Ferritin Iron Release and Neurotoxicity , 1998, Journal of neurochemistry.

[31]  O. Steward,et al.  Genetic determinants of susceptibility to excitotoxic cell death: implications for gene targeting approaches. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[32]  S. Baum,et al.  The Effects of Aspirin on Gastric Prostaglandins , 1994, Annals of Internal Medicine.

[33]  S J Blackband,et al.  Relaxation-time and diffusion NMR microscopy of single neurons. , 1994, Journal of magnetic resonance. Series B.

[34]  R S Balaban,et al.  Lipid bilayer and water proton magnetization transfer: Effect of cholesterol , 1991, Magnetic resonance in medicine.

[35]  N. Lundbom,et al.  Relaxometry of brain: Why white matter appears bright in MRI , 1990, Magnetic resonance in medicine.

[36]  W. Maenhaut,et al.  Regional distribution of potassium, calcium, and six trace elements in normal human brain , 1989, Neurochemical Research.

[37]  C. Geula,et al.  Acetylcholinesterase‐rich pyramidal neurons in the human neocortex and hippocampus: Absence at birth, development during the life span, and dissolution in Alzheimer's disease , 1988, Annals of neurology.

[38]  P. Fatouros,et al.  An MRI phantom material for quantitative relaxometry , 1987, Magnetic resonance in medicine.

[39]  J. Prohaska Functions of trace elements in brain metabolism. , 1987, Physiological reviews.

[40]  S. Levine,et al.  Histochemical observations on rodent brain melanin , 1983, Brain Research Bulletin.

[41]  R. C. Macridis A review , 1963 .

[42]  J. Eisinger,et al.  Relaxation Enhancement by Paramagnetic Ion Binding in Deoxyribonucleic Acid Solutions , 1961, Nature.

[43]  P. J. Warren,et al.  The distribution of copper in human brain. , 1960, Brain : a journal of neurology.

[44]  B. Hallgren,et al.  THE EFFECT OF AGE ON THE NON‐HAEMIN IRON IN THE HUMAN BRAIN , 1958, Journal of neurochemistry.

[45]  Jens Frahm,et al.  Reduced intracellular mobility underlies manganese relaxivity in mouse brain in vivo: MRI at 2.35 and 9.4 T , 2014, Brain Structure and Function.

[46]  W. Lenz,et al.  Critical survey , 2004, Humangenetik.

[47]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[48]  T. Hare,et al.  Pathological Neurochemistry of Cerebrospinal Fluid , 1985 .

[49]  A. Lajtha Chemical and Cellular Architecture , 1982, Springer US.

[50]  D. Burton,et al.  Proton relaxation enhancement (PRE) in biochemistry: A critical survey , 1979 .

[51]  F E Bloom,et al.  Central catecholamine neuron systems: anatomy and physiology of the dopamine systems. , 1978, Annual review of neuroscience.

[52]  K. Fuxe,et al.  EVIDENCE FOR THE EXISTENCE OF MONOAMINE-CONTAINING NEURONS IN THE CENTRAL NERVOUS SYSTEM. I. DEMONSTRATION OF MONOAMINES IN THE CELL BODIES OF BRAIN STEM NEURONS. , 1964, Acta physiologica Scandinavica. Supplementum.