GTP binds to α-crystallin and causes a significant conformational change.

[1]  A. Cuervo,et al.  Identification of regulators of chaperone-mediated autophagy. , 2010, Molecular cell.

[2]  H. Rye,et al.  Triggering Protein Folding within the GroEL-GroES Complex* , 2008, Journal of Biological Chemistry.

[3]  U. Andley Crystallins in the eye: Function and pathology , 2007, Progress in Retinal and Eye Research.

[4]  G. Bhanuprakash Reddy,et al.  Chaperone‐like activity and hydrophobicity of α‐crystallin , 2006 .

[5]  Y. Sun,et al.  Small heat shock proteins: molecular structure and chaperone function , 2005, Cellular and Molecular Life Sciences CMLS.

[6]  L. Cassimeris,et al.  Identification of a novel tubulin-destabilizing protein related to the chaperone cofactor E , 2005, Journal of Cell Science.

[7]  K. Das,et al.  Role of ATP on the Interaction of α-Crystallin with Its Substrates and Its Implications for the Molecular Chaperone Function* , 2004, Journal of Biological Chemistry.

[8]  T. Hiratsuka Fluorescent and colored trinitrophenylated analogs of ATP and GTP. , 2003, European journal of biochemistry.

[9]  U. Rawat,et al.  α‐Crystallin and ATP facilitate the in vitro renaturation of xylanase: enhancement of refolding by metal ions , 2002, Protein science : a publication of the Protein Society.

[10]  M. Maurizi,et al.  Degradation of L-glutamate dehydrogenase from Escherichia coli: allosteric regulation of enzyme stability. , 2002, Archives of biochemistry and biophysics.

[11]  Keyang Wang,et al.  ATP causes small heat shock proteins to release denatured protein. , 2001, European journal of biochemistry.

[12]  T. MacRae Structure and function of small heat shock/α-crystallin proteins: established concepts and emerging ideas , 2000, Cellular and Molecular Life Sciences CMLS.

[13]  A. Spector,et al.  Development and characterization of an H2O2-resistant immortal lens epithelial cell line. , 2000, Investigative ophthalmology & visual science.

[14]  P. Horowitz,et al.  The hydrophobic properties of GroEL: a review of ligand effects on the modulation of GroEL hydrophobic surfaces. , 1999, Cell stress & chaperones.

[15]  S. N. Murthy,et al.  Properties of purified lens transglutaminase and regulation of its transamidase/crosslinking activity by GTP. , 1998, Experimental eye research.

[16]  T. Ramakrishna,et al.  The Chaperone-like α-Crystallin forms a complex only with the aggregation-prone molten globule state of α-Lactalbumin , 1998 .

[17]  U. Rawat,et al.  Interactions of chaperone alpha-crystallin with the molten globule state of xylose reductase. Implications for reconstitution of the active enzyme. , 1998, The Journal of biological chemistry.

[18]  G. S. Kumar,et al.  Interaction of 1,1′-Bi(4-anilino)naphthalene-5,5′-Disulfonic Acid with α-Crystallin* , 1998, The Journal of Biological Chemistry.

[19]  J. Carver,et al.  The Interaction of the Molecular Chaperone, α-Crystallin, with Molten Globule States of Bovine α-Lactalbumin* , 1997, The Journal of Biological Chemistry.

[20]  B. Raman,et al.  Molten-Globule State of Carbonic Anhydrase Binds to the Chaperone-like α-Crystallin* , 1996, The Journal of Biological Chemistry.

[21]  Kausik Si,et al.  Characterization of Multiple mRNAs That Encode Mammalian Translation Initiation Factor 5 (eIF-5)* , 1996, The Journal of Biological Chemistry.

[22]  W. Surewicz,et al.  Conformational Properties of Substrate Proteins Bound to a Molecular Chaperone -Crystallin (*) , 1996, The Journal of Biological Chemistry.

[23]  J. Carver,et al.  On the interaction of α-crystallin with unfolded proteins , 1995 .

[24]  W. Surewicz,et al.  Temperature‐induced exposure of hydrophobic surfaces and its effect on the chaperone activity of α‐crystallin , 1995, FEBS letters.

[25]  M. Reddy,et al.  Interaction of ATP and lens alpha crystallin characterized by equilibrium binding studies and intrinsic tryptophan fluorescence spectroscopy. , 1995, Biochimica et biophysica acta.

[26]  Keyang Wang,et al.  The chaperone activity of bovine alpha crystallin. Interaction with other lens crystallins in native and denatured states. , 1994, The Journal of biological chemistry.

[27]  J. Horwitz,et al.  Alpha-crystallin, a molecular chaperone, forms a stable complex with carbonic anhydrase upon heat denaturation. , 1993, Biochemical and biophysical research communications.

[28]  G E Martorana,et al.  Conformational stability of bovine alpha-crystallin. Evidence for a destabilizing effect of ascorbate. , 1992, The Biochemical journal.

[29]  G. Kurzban,et al.  Purification of bovine liver rhodanese by low-pH column chromatography. , 1991, Protein expression and purification.

[30]  A. Spector,et al.  Repair of H2O2-induced DNA damage in bovine lens epithelial cell cultures. , 1989, Experimental eye research.

[31]  L. Sklar,et al.  Hydrogen peroxide-induced injury of cells and its prevention by inhibitors of poly(ADP-ribose) polymerase. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[32]  T. Hiratsuka A chromophoric and fluorescent analog of GTP, 2',3'-O-(2,4,6-trinitrocyclohexadienylidene)-GTP, as a spectroscopic probe for the GTP inhibitory site of liver glutamate dehydrogenase. , 1985, The Journal of biological chemistry.

[33]  W. Hol,et al.  The covalent and tertiary structure of bovine liver rhodanese , 1978, Nature.

[34]  G. Weber,et al.  Dimer formation from 1-anilino-8-naphthalenesulfonate catalyzed by bovine serum albumin. Fluorescent molecule with exceptional binding properties , 1969 .

[35]  R. Seifert,et al.  Quenching of tryptophan fluorescence in bovine lens proteins by acrylamide and iodide. , 1988, Current eye research.

[36]  L. Wilson,et al.  Acrylamide and iodide fluorescence quenching as a structural probe of tryptophan microenvironment in bovine lens crystallins. , 1986, Current eye research.