Group Diagrams for Representing Trajectories

We propose the group diagram (GD) as a representation for multiple trajectories representing one or several moving groups. Given a distance threshold, a similarity measure and a minimality criterion, a minimal GD is a minimal representation of the groups maintaining the spatio-temporal structure of the groups' movement. We state hardness results and approximation algorithms for computing several variants of the GD and experimentally evaluate our algorithms on GPS data of a family group of migrating geese.

[1]  Bettina Speckmann,et al.  Trajectory Grouping Structure under Geodesic Distance , 2015, Symposium on Computational Geometry.

[2]  Helmut Alt,et al.  Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..

[3]  Yan Huang,et al.  Modeling Herds and Their Evolvements from Trajectory Data , 2008, GIScience.

[4]  Bettina Speckmann,et al.  Trajectory grouping structure , 2013, J. Comput. Geom..

[5]  Maarten Löffler,et al.  An Experimental Evaluation of Grouping Definitions for Moving Entities , 2019, SIGSPATIAL/GIS.

[6]  Bettina Speckmann,et al.  Trajectory Grouping Structure: the Video , 2014, Symposium on Computational Geometry.

[7]  Bettina Speckmann,et al.  Grouping Time-varying Data for Interactive Exploration , 2016, SoCG.

[8]  Joachim Gudmundsson,et al.  Detecting Commuting Patterns by Clustering Subtrajectories , 2011, Int. J. Comput. Geom. Appl..

[9]  Bettina Speckmann,et al.  Trajectory grouping structure , 2015, J. Comput. Geom..

[10]  Joachim Gudmundsson,et al.  Compact Flow Diagrams for State Sequences , 2016, SEA.

[11]  Charles J. Colbourn,et al.  Unit disk graphs , 1991, Discret. Math..

[12]  Jun Luo,et al.  Finding long and similar parts of trajectories , 2009, Comput. Geom..

[13]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[14]  Dieter Pfoser,et al.  Map Construction Algorithms , 2015, Springer International Publishing.

[15]  Susanne E. Hambrusch,et al.  OLAP for Trajectories , 2008, DEXA.

[16]  Maarten Löffler,et al.  A Refined Definition for Groups of Moving Entities and its Computation , 2016, ISAAC.