Isotopic Constraints on the Late Archean Carbon Cycle from the Transvaal Supergroup along the Western Margin of the Kaapvaal Craton, South Africa

[1]  D. Sumner,et al.  Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis , 2009 .

[2]  D. Canfield,et al.  Early anaerobic metabolisms , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[3]  J. Eigenbrode,et al.  Late Archean rise of aerobic microbial ecosystems , 2006, Proceedings of the National Academy of Sciences.

[4]  J. Hayes,et al.  The carbon cycle and associated redox processes through time , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[5]  D. Sumner,et al.  Sequence stratigraphic development of the Neoarchean Transvaal carbonate platform, Kaapvaal Craton, South Africa , 2006 .

[6]  Juan Pablo Lacassie,et al.  Stratigraphic and geochemical framework of the Agouron drill cores, Transvaal Supergroup (Neoarchean–Paleoproterozoic, South Africa) , 2006 .

[7]  A. Knoll,et al.  An iron shuttle for deepwater silica in Late Archean and early Paleoproterozoic iron formation , 2006 .

[8]  A. Kappler,et al.  The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations , 2005 .

[9]  D. Canfield THE EARLY HISTORY OF ATMOSPHERIC OXYGEN: Homage to Robert M. Garrels , 2005 .

[10]  James F. Kasting,et al.  A coupled atmosphere–ecosystem model of the early Archean Earth , 2005 .

[11]  D. Vance,et al.  Coupled Fe and S isotope evidence for Archean microbial Fe(III) and sulfate reduction , 2004 .

[12]  J. Grotzinger,et al.  Implications for Neoarchaean ocean chemistry from primary carbonate mineralogy of the Campbellrand‐Malmani Platform, South Africa , 2004 .

[13]  D. Schrag,et al.  Influence of form IA RubisCO and environmental dissolved inorganic carbon on the delta13C of the clam-chemoautotroph symbiosis Solemya velum. , 2004, Environmental microbiology.

[14]  Kentaro Nakamura,et al.  Carbonatization of oceanic crust by the seafloor hydrothermal activity and its significance as a CO2 sink in the Early Archean , 2004 .

[15]  D. Canfield,et al.  New insights into the burial history of organic carbon on the early Earth , 2004 .

[16]  Yumiko Watanabe,et al.  Evidence from massive siderite beds for a CO2-rich atmosphere before ~ 1.8 billion years ago , 2004, Nature.

[17]  L. Kump,et al.  The effectiveness of the Paleoproterozoic biological pump: A δ13C gradient from platform carbonates of the Pethei Group (Great Slave Lake Supergroup, NWT) , 2004 .

[18]  A. Bekker,et al.  Dating the rise of atmospheric oxygen , 2004, Nature.

[19]  Yumiko Watanabe,et al.  Evidence from massive siderite beds for a CO2-rich atmosphere before approximately 1.8 billion years ago. , 2004, Nature.

[20]  K. Nealson,et al.  Isotopic Constraints on Biogeochemical Cycling of Fe , 2004 .

[21]  Roger E. Summons,et al.  Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia , 2003 .

[22]  Roger E. Summons,et al.  A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia , 2003 .

[23]  A. Pickard SHRIMP U–Pb zircon ages for the Palaeoproterozoic Kuruman Iron Formation, Northern Cape Province, South Africa: evidence for simultaneous BIF deposition on Kaapvaal and Pilbara Cratons , 2003 .

[24]  S. Bowring,et al.  Ultrahigh-temperature metamorphism in the lower crust during Neoarchean Ventersdorp rifting and magmatism, Kaapvaal Craton, southern Africa , 2003 .

[25]  N. Beukes,et al.  Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton , 2003 .

[26]  R. C. Morris,et al.  Could bacteria have formed the Precambrian banded iron formations , 2002 .

[27]  Heinrich D. Holland,et al.  Volcanic gases, black smokers, and the great oxidation event , 2002 .

[28]  B. Delille CO2 in Seawater: Equilibrium, Kinetics, Isotopes , 2002 .

[29]  K. Hinrichs Microbial fixation of methane carbon at 2.7 Ga: Was an anaerobic mechanism possible? , 2002 .

[30]  G. Shields,et al.  Precambrian marine carbonate isotope database: Version 1.1 , 2002 .

[31]  Donald E. Canfield,et al.  Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides , 2002, Nature.

[32]  J. T. Turner Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms , 2002 .

[33]  J. Kasting,et al.  Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. , 2002, Astrobiology.

[34]  D. Wolf-Gladrow,et al.  CO2 in Seawater: Equilibrium, Kinetics, Isotopes , 2001 .

[35]  N. Sleep,et al.  Carbon dioxide cycling and implications for climate on ancient Earth , 2001 .

[36]  J. Kasting,et al.  Rise of atmospheric oxygen and the “upside‐down” Archean mantle , 2001 .

[37]  Fractionation of the Isotopes of Carbon and Hydrogen in Biosynthetic Processes , 2001 .

[38]  J. Hayes Fractionation of Carbon and Hydrogen Isotopes in Biosynthetic Processes , 2001 .

[39]  M. Thiemens,et al.  Atmospheric influence of Earth's earliest sulfur cycle , 2000, Science.

[40]  W. Schlager,et al.  Basic Types of Submarine Slope Curvature , 2000 .

[41]  John P. Grotzinger,et al.  Late Archean Aragonite Precipitation: Petrography, Facies Associations, and Environmental Significance , 2000 .

[42]  A. Colman,et al.  The Global Diagenetic Flux of Phosphorus From Marine Sediments to the Oceans: Redox Sensitivity and the Control of Atmospheric Oxygen Levels , 2000 .

[43]  S. Mazzullo Organogenic Dolomitization in Peritidal to Deep-Sea Sediments , 2000 .

[44]  J. Grotzinger,et al.  Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World , 2000 .

[45]  C. Glenn,et al.  Marine Authigenesis: From Global to Microbial , 2000 .

[46]  R. Buick,et al.  Redox state of the Archean atmosphere: Evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia , 1999 .

[47]  D. Teagle,et al.  The uptake of carbon during alteration of ocean crust , 1999 .

[48]  H. D. Holland,et al.  Paleosols and the evolution of atmospheric oxygen: a critical review. , 1998, American journal of science.

[49]  Derek R. Lovley,et al.  Microbiological evidence for Fe(III) reduction on early Earth , 1998, Nature.

[50]  W. Altermann,et al.  Sedimentation rates, basin analysis and regional correlations of three Neoarchaean and Palaeoproterozoic sub-basins of the Kaapvaal craton as inferred from precise U–Pb zircon ages from volcaniclastic sediments , 1998 .

[51]  Hilairy E. Hartnett,et al.  Influence of oxygen exposure time on organic carbon preservation in continental margin sediments , 1998, Nature.

[52]  Dawn Y. Sumner,et al.  Late Archean calcite-microbe interactions; two morphologically distinct microbial communities that affected calcite nucleation differently , 1997 .

[53]  D. Sumner Carbonate precipitation and oxygen stratification in late Archean seawater as deduced from facies and stratigraphy of the Gamohaan and Frisco formations, Transvaal Supergroup, South Africa , 1997 .

[54]  W. Altermann,et al.  Sedimentology and facies development of an Archaean shelf: carbonate platform transition in the Kaapvaal Craton, as deduced from a deep borehole at Kathu, South Africa , 1997 .

[55]  Harald Strauss,et al.  Carbon and sulfur isotopic compositions of organic carbon and pyrite in sediments from the Transvaal Supergroup, South Africa , 1996 .

[56]  D. Sumner,et al.  UPb geochronologic constraints on deposition of the Campbellrand Subgroup, Transvaal Supergroup, South Africa , 1996 .

[57]  A. J. Kaufman Geochemical and mineralogic effects of contact metamorphism on banded iron-formation: an example from the Transvaal Basin, South Africa , 1996 .

[58]  J. Grotzinger,et al.  Herringbone Calcite: Petrography and Environmental Significance , 1996 .

[59]  R. Jahnke,et al.  The global ocean flux of particulate organic carbon: Areal distribution and magnitude , 1996 .

[60]  J. Grotzinger,et al.  Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration? , 1996, Geology.

[61]  P. Van Cappellen,et al.  Redox Stabilization of the Atmosphere and Oceans by Phosphorus-Limited Marine Productivity , 1996, Science.

[62]  A. Kotov,et al.  The stratigraphical position of the Buffelsfontein Group based on field relationships and chemical and geochronological data , 1995 .

[63]  J. Hedges,et al.  Sedimentary organic matter preservation: an assessment and speculative synthesis , 1995 .

[64]  J. Martini,et al.  Zircon Pb-evaporation age determinations for the Oak Tree Formation, Chuniespoort Group, Transvaal Sequence; implications for Transvaal-Griqualand West basin correlations , 1995 .

[65]  D. Sumner Facies, paleogeography, and the carbonate precipitation on the archean (2520 Ma) Campbellrand-Malmani carbonate platform, Transvaal supergroup, South Africa , 1995 .

[66]  W. Altermann,et al.  U-Pb zircon age for a tuff in the Campbell Group, Griqualand West Sequence, South Africa: Implications for Early Proterozoic rock accumulation rates , 1994 .

[67]  W. Altermann,et al.  U-Pb zircon age for a tuff in the Campbell Group, Griqualand West Sequence, South Africa , 1994 .

[68]  S. Bengtson Early life on earth , 1994 .

[69]  J. Kasting,et al.  New Constraints on Precambrian Ocean Composition , 1993, The Journal of Geology.

[70]  F. Widdel,et al.  Ferrous iron oxidation by anoxygenic phototrophic bacteria , 1993, Nature.

[71]  L. P. Knauth,et al.  Stable isotope geochemistry of cherts and carbonates from the 2.0 Ga gunflint iron formation: implications for the depositional setting, and the effects of diagenesis and metamorphism , 1992 .

[72]  H. Strauss,et al.  Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment , 1992, Nature.

[73]  J. Schopf,et al.  The Proterozoic Biosphere: The Proterozoic Biosphere , 1992 .

[74]  R. Clayton,et al.  Geochemistry of Precambrian carbonates. IV - Early Paleoproterozoic (2.25 +/- 0.25 Ga) seawater , 1992 .

[75]  J. William Schopf,et al.  The Proterozoic biosphere : a multidisciplinary study , 1992 .

[76]  H. Strauss,et al.  The Proterozoic Biosphere: Procedures of Whole Rock and Kerogen Analysis , 1992 .

[77]  H. Strauss,et al.  The Proterozoic Biosphere: Abundances and Isotopic Compositions of Carbon and Sulfur Species in Whole Rock and Kerogen Samples , 1992 .

[78]  R. Armstrong,et al.  Zircon ion microprobe studies bearing on the age and evolution of the Witwatersrand triad , 1991 .

[79]  Derek R. Lovley,et al.  Enzymatic versus nonenzymatic mechanisms for Fe(III) reduction in aquatic sediments , 1991 .

[80]  L. Kump Interpreting carbon-isotope excursions: Strangelove oceans , 1991 .

[81]  A. J. Kaufman,et al.  Primary and diagenetic controls of isotopic compositions of iron-formation carbonates. , 1990, Geochimica et cosmochimica acta.

[82]  A. J. Kaufman,et al.  Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa. , 1990, Economic geology and the bulletin of the Society of Economic Geologists.

[83]  J. C. Walker Precambrian evolution of the climate system. , 1990, Global and planetary change.

[84]  Brian M. Smith,et al.  Cretaceous ocean crust at DSDP Sites 417 and 418: Carbon uptake from weathering versus loss by magmatic outgassing , 1989 .

[85]  J. Ehleringer,et al.  Carbon Isotope Discrimination and Photosynthesis , 1989 .

[86]  N. Beukes,et al.  New evidence for thrust faulting in Griqualand West, South Africa; implications for stratigraphy and the age of red beds , 1987 .

[87]  JAMES C. G. Walker,et al.  Was the Archaean biosphere upside down? , 1987, Nature.

[88]  N. Beukes Facies relations, depositional environments and diagenesis in a major early Proterozoic stromatolitic carbonate platform to basinal sequence, Campbellrand Subgroup, Transvaal Supergroup, Southern Africa , 1987 .

[89]  J. Schopf,et al.  Filamentous microfossils in the early proterozoic transvaal supergroup: their morphology, significance, and paleoenvironmental setting , 1987 .

[90]  G. Hut Consultants' group meeting on stable isotope reference samples for geochemical and hydrological investigations , 1987 .

[91]  J. Kasting Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. , 1987, Precambrian research.

[92]  K. Towe Earth's Early Atmosphere. , 1987, Science.

[93]  C. Stowe Synthesis and interpretation of structures along the north-eastern boundary of the Namaqua tectonic province, South Africa , 1986 .

[94]  J. Hayes,et al.  Millimeter-scale variations of stable isotope abundances in carbonates from banded iron-formations in the Hamersley Group of Western Australia. , 1985, Economic geology and the bulletin of the Society of Economic Geologists.

[95]  Wallace S. Broecker,et al.  The Carbon cycle and atmospheric CO[2] : natural variations Archean to present , 1985 .

[96]  T. Miyano,et al.  Phase relations of stilpnomelane, ferri-annite, and riebeckite in very low-grade metamorphosed iron-formations , 1984 .

[97]  JAMES C. G. Walker,et al.  Suboxic diagenesis in banded iron formations , 1984, Nature.

[98]  N. Beukes Sedimentology of the Kuruman and Griquatown Iron-formations, Transvaal Supergroup, Griqualand West, South Africa , 1984 .

[99]  JAMES C. G. Walker,et al.  Possible limits on the composition of the Archaean ocean , 1983, Nature.

[100]  J.-F. Minster,et al.  Tracers in the Sea , 1982 .

[101]  Paul B. Hays,et al.  A negative feedback mechanism for the long‐term stabilization of Earth's surface temperature , 1981 .

[102]  F. Wellmer,et al.  Anomalous 13C depletion in early Precambrian graphites from Superior Province, Canada , 1981, Nature.

[103]  P. Kroopnick The distribution of13C in the Atlantic Ocean , 1980 .

[104]  V. Ramanathan,et al.  Enhanced CO2 greenhouse to compensate for reduced solar luminosity on early Earth , 1979, Nature.

[105]  M. Coleman,et al.  Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments , 1977, Nature.

[106]  I. N. McCave Vertical flux of particles in the ocean , 1975 .

[107]  M. Schidlowski,et al.  Precambrian sedimentary carbonates: carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget☆ , 1975 .

[108]  D. McKirdy,et al.  Metamorphic Alteration of Carbon Isotopic Composition in Ancient Sedimentary Organic Matter: New Evidence from Australia and South Africa , 1974 .

[109]  A. Button The stratigraphic history of the Malmani dolomite in the Eastern and North-Eastern Transvaal , 1973 .

[110]  C. Sagan,et al.  Earth and Mars: Evolution of Atmospheres and Surface Temperatures , 1972, Science.

[111]  H. D. Holland,et al.  The geologic history of sea water—an attempt to solve the problem , 1972 .

[112]  R. Clayton,et al.  Carbon isotopic evidence for the origin of a banded iron-formation in Western Australia , 1972 .

[113]  F. C. Tan,et al.  Significance of Oxygen and Carbon Isotope Variations in Early Precambrian Cherts and Carbonate Rocks of Southern Africa , 1972 .

[114]  T. Smayda The suspension and sinking of phytoplankton in the sea , 1970 .

[115]  F. E. Wickman The cycle of carbon and the stable carbon isotopes , 1956 .

[116]  J. McCrea On the Isotopic Chemistry of Carbonates and a Paleotemperature Scale , 1950 .

[117]  H. Urey,et al.  The thermodynamic properties of isotopic substances. , 1947, Journal of the Chemical Society.

[118]  Earl A. Gulbransen,et al.  Variations in the Relative Abundance of the Carbon Isotopes , 1939 .