Numerically Efficient Finite Element Formulation for Modeling Active Composite Laminates

Active systems have attracted a great deal of attention in the last few decades due to the potential benefits they offer over the conventional passive systems in various applications. Dealing with active systems requires the possibility of modeling and simulation of their behavior. The paper considers thin-walled active structures with laminate architecture featuring fiber reinforced composite as a passive material and utilizing piezoelectric patches as both sensor and actuator components. The objective is the development of numerically effective finite element tool for their modeling. A 9-node degenerate shell element is described in the paper and the main aspects of the application of the element are discussed through a set of numerical examples.

[1]  H. S. Tzou,et al.  Analysis of piezoelastic structures with laminated piezoelectric triangle shell elements , 1996 .

[2]  E. Carrera An Improved Reissner-Mindlin-Type Model for the Electromechanical Analysis of Multilayered Plates Including Piezo-Layers , 1997 .

[3]  Miguel Luiz Bucalem,et al.  Locking-free piezoelectric MITC shell elements , 2003 .

[4]  J. Z. Zhu,et al.  The finite element method , 1977 .

[5]  Nathan Ida,et al.  Introduction to the Finite Element Method , 1997 .

[6]  Kwang Joon Yoon,et al.  Piezoelectric Actuator–Sensor Analysis using a Three-Dimensional Assumed Strain Solid Element , 2004 .

[7]  Simone Mesecke-Rischmann,et al.  Modellierung von flachen piezoelektrischen Schalen mit zuverlässigen finiten Elementen , 2004 .

[8]  O. C. Zienkiewicz,et al.  Analysis of thick and thin shell structures by curved finite elements , 1970 .

[9]  Ulrich Gabbert,et al.  Analysis and design of thin-walled smart structures in industrial applications , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[10]  G. Prathap The Finite Element Method in Structural Mechanics , 1993 .

[11]  Ulrich Gabbert,et al.  Modeling of smart composite shell structures , 2002 .

[12]  Raimund Rolfes,et al.  High-Performance 4-Node Shell Element with Piezoelectric Coupling , 2006 .

[13]  J. M. Kennedy,et al.  Hourglass control in linear and nonlinear problems , 1983 .

[14]  T. Hughes,et al.  Finite element method for piezoelectric vibration , 1970 .

[15]  R. Lammering,et al.  The application of a finite shell element for composites containing piezo-electric polymers in vibration control , 1991 .

[16]  Hazem Kioua,et al.  Piezoelectric induced bending and twisting of laminated composite shallow shells , 2000 .

[17]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[18]  K. Rohwer,et al.  Application of higher order theories to the bending analysis of layered composite plates , 1992 .

[19]  O. C. Zienkiewicz,et al.  The finite element method, fourth edition; volume 2: solid and fluid mechanics, dynamics and non-linearity , 1991 .

[20]  Ulrich Gabbert,et al.  FINITE ELEMENT DEVELOPMENT FOR GENERALLY SHAPED PIEZOELECTRIC ACTIVE LAMINATES PART I - LINEAR APPROACH UDC 624.041/046:515.3 , 2004 .

[21]  c.s Krishnamoorthy Finite Elements Analysis Theory And Programming , 1987 .

[22]  Ulrich Gabbert,et al.  Accurate Modeling of the Electric Field within Piezoelectric Layers for Active Composite Structures , 2007 .

[23]  Ayech Benjeddou,et al.  Advances in piezoelectric finite element modeling of adaptive structural elements: a survey , 2000 .

[24]  Hoon Cheol Park,et al.  Design and demonstration of a biomimetic wing section using a lightweight piezo-composite actuator (LIPCA) , 2005 .

[25]  Antonio Arnau,et al.  Fundamentals on Piezoelectricity , 2004 .

[26]  Y. K. Cheung,et al.  Analysis of laminated composite plates by hybrid stress isoparametric element , 1993 .