Resampling-Based Methodologies in Statistics of Extremes: Environmental and Financial Applications

Resampling computer intensive methodologies, like the jackknife and the bootstrap are important tools for a reliable semi-parametric estimation of parameters of extreme or even rare events. Among these parameters we mention the extreme value index, ξ, the primary parameter in statistics of extremes. Most of the semi-parametric estimators of this parameter show the same type of behaviour: nice asymptotic properties, but a high variance for small k, the number of upper order statistics used in the estimation, a high bias for large k, and the need for an adequate choice of k. After a brief reference to some estimators of the aforementioned parameter and their asymptotic properties we present an algorithm that deals with an adaptive reliable estimation of ξ. Applications of these methodologies to the analysis of environmental and financial data sets are undertaken.

[1]  M. Ivette Gomes,et al.  A Sturdy Reduced-Bias Extreme Quantile (VaR) Estimator , 2007 .

[2]  Holger Drees,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Preprint Extreme Quantile Estimation for Dependent Data with Applications to Finance Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Extreme Quantile Estimation for Dependent Data with Applications to Finance , 2022 .

[3]  M. Ivette Gomes,et al.  Peaks over random threshold methodology for tail index and high quantile estimation , 2006 .

[4]  M. Gomes,et al.  Generalized jackknife semi-parametric estimators of the tail index. , 2002 .

[5]  M. Gomes,et al.  Statistics of extremes for IID data and breakthroughs in the estimation of the extreme value index: Laurens de Haan leading contributions , 2008 .

[6]  H. L. Gray,et al.  The Generalised Jackknife Statistic , 1974 .

[7]  W. Strawderman The Generalized Jackknife Statistic , 1973 .

[8]  Fernanda Figueiredo,et al.  Adaptive estimation of heavy right tails: resampling-based methods in action , 2012 .

[9]  L. Peng,et al.  A Bootstrap-based Method to Achieve Optimality in Estimating the Extreme-value Index , 2000 .

[10]  M. Ivette Gomes,et al.  A new class of semi-parametric estimators of the second order parameter. , 2003 .

[11]  B. Gnedenko Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .

[12]  P. Hall,et al.  Estimating a tail exponent by modelling departure from a Pareto distribution , 1999 .

[13]  Jan Beirlant,et al.  Tail Index Estimation and an Exponential Regression Model , 1999 .

[14]  M. Gomes,et al.  A computational study of a quasi-PORT methodology for VaR based on second-order reduced-bias estimation , 2012 .

[15]  Технология Springer Science+Business Media , 2013 .

[16]  M. Ivette Gomes,et al.  Reduced-Bias Tail Index Estimators Under a Third-Order Framework , 2009 .

[17]  M. Ivette Gomes,et al.  IMPROVING SECOND ORDER REDUCED BIAS EXTREME VALUE INDEX ESTIMATION , 2007 .

[18]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[19]  M. Gomes,et al.  Generalized Jackknife-Based Estimators for Univariate Extreme-Value Modeling , 2013 .

[20]  M. Ivette Gomes,et al.  Reduced-Bias Location-Invariant Extreme Value Index Estimation: A Simulation Study , 2011, Commun. Stat. Simul. Comput..

[21]  L. Haan,et al.  Extreme value theory : an introduction , 2006 .

[22]  Laurens de Haan,et al.  Slow Variation and Characterization of Domains of Attraction , 1984 .

[23]  R. Reiss,et al.  Statistical Analysis of Extreme Values-with applications to insurance , 1997 .

[24]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[25]  Liang Peng,et al.  Comparison of tail index estimators , 1998 .

[26]  M. Ivette Gomes,et al.  Adaptive PORT–MVRB estimation: an empirical comparison of two heuristic algorithms , 2013 .

[27]  M. Gomes,et al.  Asymptotically best linear unbiased tail estimators under a second-order regular variation condition , 2005 .

[28]  M. Neves,et al.  Alternatives to a Semi-Parametric Estimator of Parameters of Rare Events—The Jackknife Methodology* , 2000 .

[29]  M. Ivette Gomes,et al.  PORT Hill and Moment Estimators for Heavy-Tailed Models , 2008, Commun. Stat. Simul. Comput..

[30]  M. Ivette Gomes,et al.  DIRECT REDUCTION OF BIAS OF THE CLASSI- CAL HILL ESTIMATOR ⁄ , 2005 .

[31]  M. Ivette Gomes,et al.  The Bootstrap Methodology in Statistics of Extremes—Choice of the Optimal Sample Fraction , 2001 .

[32]  J. Geluk,et al.  Regular variation, extensions and Tauberian theorems , 1987 .

[33]  M. J. Martins,et al.  “Asymptotically Unbiased” Estimators of the Tail Index Based on External Estimation of the Second Order Parameter , 2002 .

[34]  M. Gomes,et al.  Adaptive Reduced-Bias Tail Index and VaR Estimation via the Bootstrap Methodology , 2011 .

[35]  M. Ivette Gomes,et al.  Tail index estimation for heavy‐tailed models: accommodation of bias in weighted log‐excesses , 2007 .

[36]  Liang Peng,et al.  Asymptotically unbiased estimators for the extreme-value index , 1998 .