Resampling-Based Methodologies in Statistics of Extremes: Environmental and Financial Applications
暂无分享,去创建一个
Fernanda Figueiredo | M. Ivette Gomes | Lígia Henriques-Rodrigues | M. Gomes | L. Henriques-Rodrigues | Fernanda Figueiredo | L. Henriques‐Rodrigues
[1] M. Ivette Gomes,et al. A Sturdy Reduced-Bias Extreme Quantile (VaR) Estimator , 2007 .
[2] Holger Drees,et al. Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Preprint Extreme Quantile Estimation for Dependent Data with Applications to Finance Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Extreme Quantile Estimation for Dependent Data with Applications to Finance , 2022 .
[3] M. Ivette Gomes,et al. Peaks over random threshold methodology for tail index and high quantile estimation , 2006 .
[4] M. Gomes,et al. Generalized jackknife semi-parametric estimators of the tail index. , 2002 .
[5] M. Gomes,et al. Statistics of extremes for IID data and breakthroughs in the estimation of the extreme value index: Laurens de Haan leading contributions , 2008 .
[6] H. L. Gray,et al. The Generalised Jackknife Statistic , 1974 .
[7] W. Strawderman. The Generalized Jackknife Statistic , 1973 .
[8] Fernanda Figueiredo,et al. Adaptive estimation of heavy right tails: resampling-based methods in action , 2012 .
[9] L. Peng,et al. A Bootstrap-based Method to Achieve Optimality in Estimating the Extreme-value Index , 2000 .
[10] M. Ivette Gomes,et al. A new class of semi-parametric estimators of the second order parameter. , 2003 .
[11] B. Gnedenko. Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .
[12] P. Hall,et al. Estimating a tail exponent by modelling departure from a Pareto distribution , 1999 .
[13] Jan Beirlant,et al. Tail Index Estimation and an Exponential Regression Model , 1999 .
[14] M. Gomes,et al. A computational study of a quasi-PORT methodology for VaR based on second-order reduced-bias estimation , 2012 .
[15] Технология. Springer Science+Business Media , 2013 .
[16] M. Ivette Gomes,et al. Reduced-Bias Tail Index Estimators Under a Third-Order Framework , 2009 .
[17] M. Ivette Gomes,et al. IMPROVING SECOND ORDER REDUCED BIAS EXTREME VALUE INDEX ESTIMATION , 2007 .
[18] B. M. Hill,et al. A Simple General Approach to Inference About the Tail of a Distribution , 1975 .
[19] M. Gomes,et al. Generalized Jackknife-Based Estimators for Univariate Extreme-Value Modeling , 2013 .
[20] M. Ivette Gomes,et al. Reduced-Bias Location-Invariant Extreme Value Index Estimation: A Simulation Study , 2011, Commun. Stat. Simul. Comput..
[21] L. Haan,et al. Extreme value theory : an introduction , 2006 .
[22] Laurens de Haan,et al. Slow Variation and Characterization of Domains of Attraction , 1984 .
[23] R. Reiss,et al. Statistical Analysis of Extreme Values-with applications to insurance , 1997 .
[24] B. Efron. Bootstrap Methods: Another Look at the Jackknife , 1979 .
[25] Liang Peng,et al. Comparison of tail index estimators , 1998 .
[26] M. Ivette Gomes,et al. Adaptive PORT–MVRB estimation: an empirical comparison of two heuristic algorithms , 2013 .
[27] M. Gomes,et al. Asymptotically best linear unbiased tail estimators under a second-order regular variation condition , 2005 .
[28] M. Neves,et al. Alternatives to a Semi-Parametric Estimator of Parameters of Rare Events—The Jackknife Methodology* , 2000 .
[29] M. Ivette Gomes,et al. PORT Hill and Moment Estimators for Heavy-Tailed Models , 2008, Commun. Stat. Simul. Comput..
[30] M. Ivette Gomes,et al. DIRECT REDUCTION OF BIAS OF THE CLASSI- CAL HILL ESTIMATOR ⁄ , 2005 .
[31] M. Ivette Gomes,et al. The Bootstrap Methodology in Statistics of Extremes—Choice of the Optimal Sample Fraction , 2001 .
[32] J. Geluk,et al. Regular variation, extensions and Tauberian theorems , 1987 .
[33] M. J. Martins,et al. “Asymptotically Unbiased” Estimators of the Tail Index Based on External Estimation of the Second Order Parameter , 2002 .
[34] M. Gomes,et al. Adaptive Reduced-Bias Tail Index and VaR Estimation via the Bootstrap Methodology , 2011 .
[35] M. Ivette Gomes,et al. Tail index estimation for heavy‐tailed models: accommodation of bias in weighted log‐excesses , 2007 .
[36] Liang Peng,et al. Asymptotically unbiased estimators for the extreme-value index , 1998 .