Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation

In this paper, compact finite difference schemes for the modified anomalous fractional sub-diffusion equation and fractional diffusion-wave equation are studied. Schemes proposed previously can at most achieve temporal accuracy of order which depends on the order of fractional derivatives in the equations and is usually less than two. Based on the idea of weighted and shifted Grunwald difference operator, we establish schemes with temporal and spatial accuracy order equal to two and four respectively.

[1]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[2]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[3]  Zhi‐zhong Sun,et al.  A compact difference scheme for the fractional diffusion-wave equation , 2010 .

[4]  Fawang Liu,et al.  New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..

[5]  Fawang Liu,et al.  A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..

[6]  R. Nigmatullin The Realization of the Generalized Transfer Equation in a Medium with Fractal Geometry , 1986, January 1.

[7]  Han Zhou,et al.  Quasi-Compact Finite Difference Schemes for Space Fractional Diffusion Equations , 2012, J. Sci. Comput..

[8]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[9]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[10]  Raymond H. Chan,et al.  An Introduction to Iterative Toeplitz Solvers (Fundamentals of Algorithms) , 2007 .

[11]  Mingrong Cui,et al.  Compact alternating direction implicit method for two-dimensional time fractional diffusion equation , 2012, J. Comput. Phys..

[12]  Santos B. Yuste,et al.  On an explicit finite difference method for fractional diffusion equations , 2003, ArXiv.

[13]  Fawang Liu,et al.  Finite element approximation for a modified anomalous subdiffusion equation , 2011 .

[14]  Chang-Ming Chen,et al.  Numerical methods for solving a two-dimensional variable-order modified diffusion equation , 2013, Appl. Math. Comput..

[15]  Fawang Liu,et al.  Numerical methods with fourth-order spatial accuracy for variable-order nonlinear Stokes' first problem for a heated generalized second grade fluid , 2011, Comput. Math. Appl..

[16]  Zhi‐zhong Sun,et al.  Compact difference schemes for heat equation with Neumann boundary conditions (II) , 2009 .

[17]  Sabine Fenstermacher,et al.  Numerical Approximation Of Partial Differential Equations , 2016 .

[18]  Mingrong Cui,et al.  Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..

[19]  Tie Zhang,et al.  Convergence of the compact finite difference method for second-order elliptic equations , 2006, Appl. Math. Comput..

[20]  Fawang Liu,et al.  Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term , 2009, J. Comput. Appl. Math..

[21]  Jianping Zhu,et al.  An efficient high‐order algorithm for solving systems of reaction‐diffusion equations , 2002 .

[22]  CHANG-MING CHEN,et al.  Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation , 2012, Math. Comput..

[23]  R. Nigmatullin To the Theoretical Explanation of the “Universal Response” , 1984 .

[24]  Han Zhou,et al.  A class of second order difference approximations for solving space fractional diffusion equations , 2012, Math. Comput..

[25]  Changpin Li,et al.  Numerical approaches to fractional calculus and fractional ordinary differential equation , 2011, J. Comput. Phys..

[26]  C. Lubich Discretized fractional calculus , 1986 .

[27]  Fawang Liu,et al.  Numerical Schemes with High Spatial Accuracy for a Variable-Order Anomalous Subdiffusion Equation , 2010, SIAM J. Sci. Comput..

[28]  I. Podlubny Fractional differential equations , 1998 .

[29]  Can Li,et al.  A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative , 2011, 1109.2345.

[30]  Zhi-Zhong Sun,et al.  A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..

[31]  Mehdi Dehghan,et al.  A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term , 2013, J. Comput. Phys..

[32]  V. Ervin,et al.  Variational formulation for the stationary fractional advection dispersion equation , 2006 .

[33]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[34]  Jianfei Huang,et al.  Two finite difference schemes for time fractional diffusion-wave equation , 2013, Numerical Algorithms.

[35]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[36]  R. Chan,et al.  An Introduction to Iterative Toeplitz Solvers , 2007 .

[37]  Zhi-Zhong Sun,et al.  Numerical Algorithm With High Spatial Accuracy for the Fractional Diffusion-Wave Equation With Neumann Boundary Conditions , 2013, J. Sci. Comput..

[38]  Santos B. Yuste,et al.  Weighted average finite difference methods for fractional diffusion equations , 2004, J. Comput. Phys..

[39]  I. Sokolov,et al.  Anomalous transport : foundations and applications , 2008 .