Revisiting Hume-Rothery’s Rules with artificial neural networks

Hume-Rothery’s breadth of knowledge combined with a quest for generality gave him insights into the reasons for solubility in metallic systems that have become known as Hume-Rothery’s Rules. Presented with solubility details from similar sets of constitutional diagrams, can one expect artificial neural networks (ANN), which are blind to the underlying metals physics, to reveal similar or better correlations? The aim is to test whether it is feasible to predict solid solubility limits using ANN with the parameters that Hume-Rothery identified. The results indicate that the correlations expected by Hume-Rothery’s Rules work best for a certain range of copper or silver alloy systems. The ANN can predict a value for solubility, which is a refinement on the original qualitative duties of Hume-Rothery’s Rules. The best combination of input parameters can also be evaluated by ANN.

[1]  Daniel R. Fairbairn,et al.  Neural-network applications in predicting moment-curvature parameters from experimental data , 1996 .

[2]  R. W. Gurry,et al.  Physical chemistry of metals , 1953 .

[3]  S.K. Pal,et al.  Neurocomputing motivation, models, and hybridization , 1996, Computer.

[4]  J. G. Stark,et al.  Chemistry Data Book , 1970 .

[5]  Jl. Murray,et al.  Au-Ti alloy phase diagrams, ASM Handbook , 1992 .

[6]  P. Rossiter,et al.  Assessment of the Al-Ag binary phase diagram , 1995 .

[7]  W. Hume-rothery,et al.  The lattice spacings of solid solutions of different elements in aluminium , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[8]  Johann Gasteiger,et al.  Neural Networks for Chemists: An Introduction , 1993 .

[9]  I. Ansara,et al.  Thermodynamic optimisation of the Pb–Tl binary system , 2001 .

[10]  H. Dorsett,et al.  Overview of Molecular Modelling and Ab initio Molecular Orbital Methods Suitable for Use with Energetic Materials , 2000 .

[11]  J. Alonso,et al.  Prediction of solid solubility in alloys. Application to noble metal based alloys , 1982 .

[12]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[13]  T. Findlay,et al.  SI Chemical Data , 1971 .

[14]  K. Ishida,et al.  Phase equilibria in the Ti–Al binary system , 2000 .

[15]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[16]  Robert Hecht-Nielsen,et al.  Applications of counterpropagation networks , 1988, Neural Networks.

[17]  John Homer,et al.  Artificial neural networks for the prediction of liquid viscosity, density, heat of vaporization, boiling point and Pitzer's acentric factor Part I. Hydrocarbons , 1999 .

[18]  F. Vicino The Probabilistic Neural Network. , 1998, Substance use & misuse.

[19]  Antti Korhonen,et al.  Prediction of rolling force in cold rolling by using physical models and neural computing , 1996 .

[20]  W. Sha,et al.  Software products for modelling and simulation in materials science , 2003 .

[21]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[22]  Timothy Masters,et al.  Practical neural network recipes in C , 1993 .

[23]  Imad A. Basheer,et al.  Selection of Methodology for Neural Network Modeling of Constitutive Hystereses Behavior of Soils , 2000 .

[24]  J. Alonso,et al.  Prediction of solid solubility in alloys , 1980 .

[25]  J. David Fuller,et al.  Back propagation in time‐series forecasting , 1995 .

[26]  H. Baker,et al.  Alloy phase diagrams , 1992 .

[27]  Bernard Widrow,et al.  30 years of adaptive neural networks: perceptron, Madaline, and backpropagation , 1990, Proc. IEEE.

[28]  W. B. Pearson,et al.  The crystal chemistry and physics of metals and alloys , 1972 .

[29]  Philippa A.S. Reed,et al.  An example of the use of neural computing techniques in materials science : the modelling of fatigue thresholds in Ni-base superalloys , 1999 .

[30]  J. Hopfield,et al.  Computing with neural circuits: a model. , 1986, Science.

[31]  Zi-kui Liu,et al.  Computational thermodynamic modeling of the Mg-B system , 2001 .

[32]  Keyan Li,et al.  Estimation of electronegativity values of elements in different valence states. , 2006, The journal of physical chemistry. A.

[33]  Laurene V. Fausett,et al.  Fundamentals Of Neural Networks , 1994 .

[34]  Robert J. Schalkoff,et al.  Artificial neural networks , 1997 .

[35]  Wei Sha,et al.  Application of artificial neural network for prediction of time-temperature-transformation diagrams in titanium alloys , 2000 .

[36]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[37]  M.H. Hassoun,et al.  Fundamentals of Artificial Neural Networks , 1996, Proceedings of the IEEE.

[38]  G. Raynor,et al.  The apparent metallic valencies of transition metals in solid solution , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[39]  Zhilun Gui,et al.  Analysis of the electrical properties of PZT by a BP artificial neural network , 2005 .

[40]  S. Bass,et al.  Constituent quarks and g1 , 1999, hep-ph/9902280.

[41]  J. Chelikowsky Solid solubilities in divalent alloys , 1979 .

[42]  W. Hume-Rothery,et al.  Atomic diameters, atomic volumes and solid solubility relations in alloys , 1966 .

[43]  Hiroshi Ohtani,et al.  Application of the CALPHAD method to material design , 1998 .

[44]  Dong Guo,et al.  Application of artificial neural network technique to the formulation design of dielectric ceramics , 2002 .

[45]  Sofiane Guessasma,et al.  Microstructure of APS alumina–titania coatings analysed using artificial neural network , 2004 .

[46]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .

[47]  William G. Moffatt,et al.  The handbook of binary phase diagrams , 1984 .

[48]  R. E. Watson,et al.  Transition metals: d -band hybridization, electronegativities and structural stability of intermetallic compounds , 1978 .

[49]  Bin Zou,et al.  A study on the prediction of the mechanical properties of a ceramic tool based on an artificial neural network , 2002 .

[50]  Linus Pauling,et al.  The Nature of the Chemical Bond and the Structure of Molecules and Crystals , 1941, Nature.

[51]  K. Hans Raj,et al.  Modeling of manufacturing processes with ANNs for intelligent manufacturing , 2000 .

[52]  L. Vegard,et al.  Die Konstitution der Mischkristalle und die Raumfüllung der Atome , 1921 .

[53]  S.R.H. Hoole,et al.  NDT identification of a crack using ANNs with stochastic gradient descent , 1995 .

[54]  A. Cottrell,et al.  Concepts in the Electron Theory of Alloys , 1998 .

[55]  David J. C. MacKay,et al.  Bayesian neural network model for austenite formation in steels , 1996 .

[56]  W. Sha,et al.  Application of artificial neural networks for modelling correlations in titanium alloys , 2004 .

[57]  A. Miedema,et al.  The electronegativity parameter for transition metals: Heat of formation and charge transfer in alloys , 1973 .

[58]  Anil K. Jain,et al.  Artificial Neural Networks: A Tutorial , 1996, Computer.

[59]  R. Challis,et al.  Non-destructive evaluation of the adhesive fillet size in a T-peel joint using ultrasonic Lamb waves and a linear network for data discrimination , 1995 .

[60]  David Dew-Hughes,et al.  Metals, ceramics, and polymers : an introduction to the structure and properties of engineering materials , 1974 .

[61]  T. Chart,et al.  The thermodynamics and phase diagrams of the Cd-Hg and Cd-Hg-Te systems , 1995 .

[62]  Alice E. Smith,et al.  Reducing waste in casting with a predictive neural model , 1994, J. Intell. Manuf..

[63]  J. Zupan,et al.  Neural networks: A new method for solving chemical problems or just a passing phase? , 1991 .

[64]  R. J. Williams,et al.  The valencies of the transition elements in the metallic state , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[65]  William Hume-Rothery,et al.  The structure of metals and alloys , 1939 .

[66]  I A Basheer,et al.  Artificial neural networks: fundamentals, computing, design, and application. , 2000, Journal of microbiological methods.

[67]  Larry Kaufman,et al.  Computer calculation of phase diagrams with special reference to refractory metals , 1970 .

[68]  P. V. Coveney,et al.  Prediction of the functional properties of ceramic materials from composition using artificial neural networks , 2007 .

[69]  Lawrence H. Bennett,et al.  Theory of alloy phase formation , 1980 .

[70]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.