Homogeneous CR and Para-CR Structures in Dimensions 5 and 3
暂无分享,去创建一个
[1] Joel Merker,et al. Normal forms of second-order ordinary differential equations yxx=J(x,y,yx)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{documen , 2021, Complex Analysis and its Synergies.
[2] Joel Merker,et al. Equivalences of PDE systems associated to degenerate para-CR structures: foundational aspects , 2021, Partial Differential Equations and Applications.
[3] W. Foo,et al. Rigid Biholomorphic Equivalences of Rigid C2,1 Hypersurfaces M5⊂C3 , 2021, Michigan Mathematical Journal.
[4] Zhangchi Chen,et al. Affine Homogeneous Surfaces with Hessian rank 2 and Algebras of Differential Invariants , 2020, 2010.02873.
[5] Pawel Nurowski,et al. Five-dimensional para-CR manifolds and contact projective geometry in dimension three , 2020, ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE.
[6] A. Loboda. Holomorphically homogeneous real hypersurfaces in $\mathbb {C}^3$ , 2020, 2006.07835.
[7] J. Merker,et al. On Degenerate Para-CR Structures: Cartan Reduction and Homogeneous Models , 2020, Transformation Groups.
[8] W. Foo,et al. On Convergent Poincar\'e-Moser Reduction for Levi Degenerate Embedded $5$-Dimensional CR Manifolds , 2020, 2003.01952.
[9] J. Merker. A Lie-theoretic Construction of Cartan-Moser Chains , 2020, 2001.11276.
[10] Zhangchi Chen,et al. Normal Forms for Rigid $\mathfrak{C}_{2,1}$ Hypersurfaces $M^5 \subset \mathbb{C}^3$ , 2019, Taiwanese Journal of Mathematics.
[11] Zhangchi Chen,et al. On differential invariants of parabolic surfaces , 2019, Dissertationes Mathematicae.
[12] J. Merker,et al. New Explicit Lorentzian Einstein-Weyl Structures in 3-Dimensions , 2019, Symmetry, Integrability and Geometry: Methods and Applications.
[13] Curtis Porter,et al. 3-folds CR-embedded in 5-dimensional real hyperquadrics , 2018, 1808.08625.
[14] W. Foo,et al. Parametric CR-umbilical locus of ellipsoids in C2 , 2018 .
[15] B. Doubrov,et al. Homogeneous Levi non-degenerate hypersurfaces in C3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {C}}}^3$$ , 2017, Mathematische Zeitschrift.
[16] Curtis Porter,et al. Absolute parallelism for 2-nondegenerate CR structures via bigraded Tanaka prolongation , 2017, Journal für die reine und angewandte Mathematik (Crelles Journal).
[17] B. Komrakov,et al. The geometry of second-order ordinary differential equations , 2016, 1602.00913.
[18] C. Porter. The Local Equivalence Problem for 7-Dimensional, 2-Nondegenerate CR Manifolds whose Cubic Form is of Conformal Unitary Type , 2015, 1511.04019.
[19] C. Medori,et al. Structure equations of Levi degenerate CR hypersurfaces of uniform type , 2015, 1510.07264.
[20] B. Kruglikov,et al. A short proof of the Dimension Conjecture for real hypersurfaces in ${\mathbb C}^2$ , 2015, 1509.09139.
[21] B. Doubrov,et al. Homogeneous Integrable Legendrian Contact Structures in Dimension Five , 2014, The Journal of Geometric Analysis.
[22] J. Merker,et al. Explicit Absolute Parallelism for 2-Nondegenerate Real Hypersurfaces $$M^5 \subset \mathbb {C}^3$$M5⊂C3 of Constant Levi Rank 1 , 2013, 1312.6400.
[23] J. Merker,et al. Equivalences of 5-dimensional CR manifolds (II): General classes I, II, III-1, III-2, IV-1, IV-2 , 2013, 1311.5669.
[24] B. Doubrov,et al. A new example of a generic 2-distribution on a 5-manifold with large symmetry algebra , 2013, 1305.7297.
[25] B. Kruglikov,et al. The gap phenomenon in parabolic geometries , 2013, 1303.1307.
[26] C. Medori,et al. The Equivalence Problem for Five-dimensional Levi Degenerate CR Manifolds , 2012, 1210.5638.
[27] J. Merker,et al. Explicit expression of Cartan’s connection for Levi-nondegenerate 3-manifolds in complex surfaces, and identification of the Heisenberg sphere , 2012 .
[28] V. Lychagin,et al. Global Lie–Tresse theorem , 2011, 1111.5480.
[29] P. Nurowski,et al. Differential equations and para-CR structures , 2009, 0909.2458.
[30] P. Nurowski,et al. Geometry of third-order ODEs , 2009, 0902.4129.
[31] J. Merker. Lie symmetries and CR geometry , 2008 .
[32] J. Merker. I: Lie symmetries of partial differential equations and CR geometry , 2007, math/0703130.
[33] W. Kaup,et al. Classification of Levi degenerate homogeneous CR-manifolds in dimension 5 , 2006, math/0610375.
[34] W. Kaup,et al. CR-manifolds of dimension 5: A Lie algebra approach , 2005, math/0508011.
[35] A. Isaev. Analogues of Rossi's map and E. Cartan's classification of homogeneous strongly pseudoconvex 3-dimensional hypersurfaces , 2005, math/0504353.
[36] Joel Merker,et al. Explicit differential characterization of the Newtonian free particle system in m>1 dependent variables , 2004, math/0411165.
[37] P. Nurowski,et al. Three-dimensional Cauchy?Riemann structures and second-order ordinary differential equations , 2003, math/0306331.
[38] H. Gaussier,et al. A new example of a uniformly Levi degenerate hypersurface in C3 , 2003 .
[39] J. Vickers. EQUIVALENCE, INVARIANTS AND SYMMETRY , 1997 .
[40] A. Loboda. Some invariants of tubular hypersurfaces in ℂ2 , 1996 .
[41] H. Jacobowitz. An Introduction to CR Structures , 1990 .
[42] S. Webster. On the mapping problem for algebraic real hypersurfaces , 1977 .
[43] S. Chern. On the projective structure of a real hypersurface in $\mathsf{C}_{n+1}$. , 1975 .
[44] E. Cartan. Sur le groupe de la géométrie hypersphérique , 1932 .
[45] J. Merker,et al. Classification of Simply-Transitive Levi Non-Degenerate Hypersurfaces in ℂ3 , 2021 .
[46] J. Merker,et al. Explicit Absolute Parallelism for 2-Nondegenerate Real Hypersurfaces M 5 ⊂ C 3 of Constant Levi Rank 1 , 2019 .
[47] Zhangchi Chen,et al. Normal Forms for Rigid C 2 , 1 Hypersurfaces M 5 ⊂ C 3 Dedicated to the memory of Alexander Isaev , 2019 .
[48] F. Weiguo,et al. D ec 2 01 9 Rigid equivalences of 5-dimensional 2-nondegenerate rigid real hypersurfaces M 5 ⊂ C 3 of constant Levi rank 1 , 2019 .
[49] M. Kolář. A COMPLETE NORMAL FORM FOR EVERYWHERE LEVI DEGENERATE HYPERSURFACES IN C3 , 2019 .
[50] P. Olver. Normal Forms for Submanifolds Under Group Actions , 2018 .
[51] F. Strazzullo. Symmetry analysis of general rank-3 Pfaffian systems in five variables , 2009 .
[52] Camille Bièche. Le problème d’équivalence locale pour un système scalaire complet d’équations aux dérivées partielles d’ordre deux à n variables indépendantes , 2007 .
[53] Александр Васильевич Лобода,et al. Об определении однородной строго псевдо-выпуклой гиперповерхности по коэффициентам ее нормального уравнения@@@Determination of a Homogeneous Strictly Pseudoconvex Surface from the Coefficients of Its Normal Equation , 2003 .
[54] P. Olver,et al. Moving Coframes: II. Regularization and Theoretical Foundations , 1999 .
[55] D. V. Alekseevskij,et al. The Geometry of Differential Equations , 1991 .
[56] G. Bluman,et al. Symmetries and differential equations , 1989 .
[57] P. Nurowski,et al. Symmetries of Cauchy-Riemann spaces , 1988 .
[58] M. Freeman. Real submanifolds with degenerate Levi form , 1977 .
[59] S. Shnider,et al. Real hypersurfaces in complex manifolds , 1976 .
[60] Mohsen Hachtroudi. Sur les espaces de Riemann, de Weyl et de Schouten , 1956 .
[61] Mohsen Hachtroudi. Les espaces d'éléments à connexion projective normale , 1937 .
[62] E. Cartan,et al. Sur les variétés à connexion projective , 1924 .
[63] E. Cartan,et al. Les systèmes de Pfaff, à cinq variables et les équations aux dérivées partielles du second ordre , 1910 .
[64] K. Wünschmann. Über Berührungsbedingungen bei Integralkurven von Differentialgleichungen , 1905 .
[65] A Tresse,et al. Determination des invariants ponctuels de l'equation differentielle ordinaire du second ordre y'' = w(x, y, y') , 1896 .
[66] Ar. Tresse,et al. Sur les invariants différentiels des groupes continus de transformations , 1894 .