Homogeneous CR and Para-CR Structures in Dimensions 5 and 3

[1]  Joel Merker,et al.  Normal forms of second-order ordinary differential equations yxx=J(x,y,yx)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{documen , 2021, Complex Analysis and its Synergies.

[2]  Joel Merker,et al.  Equivalences of PDE systems associated to degenerate para-CR structures: foundational aspects , 2021, Partial Differential Equations and Applications.

[3]  W. Foo,et al.  Rigid Biholomorphic Equivalences of Rigid C2,1 Hypersurfaces M5⊂C3 , 2021, Michigan Mathematical Journal.

[4]  Zhangchi Chen,et al.  Affine Homogeneous Surfaces with Hessian rank 2 and Algebras of Differential Invariants , 2020, 2010.02873.

[5]  Pawel Nurowski,et al.  Five-dimensional para-CR manifolds and contact projective geometry in dimension three , 2020, ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE.

[6]  A. Loboda Holomorphically homogeneous real hypersurfaces in $\mathbb {C}^3$ , 2020, 2006.07835.

[7]  J. Merker,et al.  On Degenerate Para-CR Structures: Cartan Reduction and Homogeneous Models , 2020, Transformation Groups.

[8]  W. Foo,et al.  On Convergent Poincar\'e-Moser Reduction for Levi Degenerate Embedded $5$-Dimensional CR Manifolds , 2020, 2003.01952.

[9]  J. Merker A Lie-theoretic Construction of Cartan-Moser Chains , 2020, 2001.11276.

[10]  Zhangchi Chen,et al.  Normal Forms for Rigid $\mathfrak{C}_{2,1}$ Hypersurfaces $M^5 \subset \mathbb{C}^3$ , 2019, Taiwanese Journal of Mathematics.

[11]  Zhangchi Chen,et al.  On differential invariants of parabolic surfaces , 2019, Dissertationes Mathematicae.

[12]  J. Merker,et al.  New Explicit Lorentzian Einstein-Weyl Structures in 3-Dimensions , 2019, Symmetry, Integrability and Geometry: Methods and Applications.

[13]  Curtis Porter,et al.  3-folds CR-embedded in 5-dimensional real hyperquadrics , 2018, 1808.08625.

[14]  W. Foo,et al.  Parametric CR-umbilical locus of ellipsoids in C2 , 2018 .

[15]  B. Doubrov,et al.  Homogeneous Levi non-degenerate hypersurfaces in C3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {C}}}^3$$ , 2017, Mathematische Zeitschrift.

[16]  Curtis Porter,et al.  Absolute parallelism for 2-nondegenerate CR structures via bigraded Tanaka prolongation , 2017, Journal für die reine und angewandte Mathematik (Crelles Journal).

[17]  B. Komrakov,et al.  The geometry of second-order ordinary differential equations , 2016, 1602.00913.

[18]  C. Porter The Local Equivalence Problem for 7-Dimensional, 2-Nondegenerate CR Manifolds whose Cubic Form is of Conformal Unitary Type , 2015, 1511.04019.

[19]  C. Medori,et al.  Structure equations of Levi degenerate CR hypersurfaces of uniform type , 2015, 1510.07264.

[20]  B. Kruglikov,et al.  A short proof of the Dimension Conjecture for real hypersurfaces in ${\mathbb C}^2$ , 2015, 1509.09139.

[21]  B. Doubrov,et al.  Homogeneous Integrable Legendrian Contact Structures in Dimension Five , 2014, The Journal of Geometric Analysis.

[22]  J. Merker,et al.  Explicit Absolute Parallelism for 2-Nondegenerate Real Hypersurfaces $$M^5 \subset \mathbb {C}^3$$M5⊂C3 of Constant Levi Rank 1 , 2013, 1312.6400.

[23]  J. Merker,et al.  Equivalences of 5-dimensional CR manifolds (II): General classes I, II, III-1, III-2, IV-1, IV-2 , 2013, 1311.5669.

[24]  B. Doubrov,et al.  A new example of a generic 2-distribution on a 5-manifold with large symmetry algebra , 2013, 1305.7297.

[25]  B. Kruglikov,et al.  The gap phenomenon in parabolic geometries , 2013, 1303.1307.

[26]  C. Medori,et al.  The Equivalence Problem for Five-dimensional Levi Degenerate CR Manifolds , 2012, 1210.5638.

[27]  J. Merker,et al.  Explicit expression of Cartan’s connection for Levi-nondegenerate 3-manifolds in complex surfaces, and identification of the Heisenberg sphere , 2012 .

[28]  V. Lychagin,et al.  Global Lie–Tresse theorem , 2011, 1111.5480.

[29]  P. Nurowski,et al.  Differential equations and para-CR structures , 2009, 0909.2458.

[30]  P. Nurowski,et al.  Geometry of third-order ODEs , 2009, 0902.4129.

[31]  J. Merker Lie symmetries and CR geometry , 2008 .

[32]  J. Merker I: Lie symmetries of partial differential equations and CR geometry , 2007, math/0703130.

[33]  W. Kaup,et al.  Classification of Levi degenerate homogeneous CR-manifolds in dimension 5 , 2006, math/0610375.

[34]  W. Kaup,et al.  CR-manifolds of dimension 5: A Lie algebra approach , 2005, math/0508011.

[35]  A. Isaev Analogues of Rossi's map and E. Cartan's classification of homogeneous strongly pseudoconvex 3-dimensional hypersurfaces , 2005, math/0504353.

[36]  Joel Merker,et al.  Explicit differential characterization of the Newtonian free particle system in m>1 dependent variables , 2004, math/0411165.

[37]  P. Nurowski,et al.  Three-dimensional Cauchy?Riemann structures and second-order ordinary differential equations , 2003, math/0306331.

[38]  H. Gaussier,et al.  A new example of a uniformly Levi degenerate hypersurface in C3 , 2003 .

[39]  J. Vickers EQUIVALENCE, INVARIANTS AND SYMMETRY , 1997 .

[40]  A. Loboda Some invariants of tubular hypersurfaces in ℂ2 , 1996 .

[41]  H. Jacobowitz An Introduction to CR Structures , 1990 .

[42]  S. Webster On the mapping problem for algebraic real hypersurfaces , 1977 .

[43]  S. Chern On the projective structure of a real hypersurface in $\mathsf{C}_{n+1}$. , 1975 .

[44]  E. Cartan Sur le groupe de la géométrie hypersphérique , 1932 .

[45]  J. Merker,et al.  Classification of Simply-Transitive Levi Non-Degenerate Hypersurfaces in ℂ3 , 2021 .

[46]  J. Merker,et al.  Explicit Absolute Parallelism for 2-Nondegenerate Real Hypersurfaces M 5 ⊂ C 3 of Constant Levi Rank 1 , 2019 .

[47]  Zhangchi Chen,et al.  Normal Forms for Rigid C 2 , 1 Hypersurfaces M 5 ⊂ C 3 Dedicated to the memory of Alexander Isaev , 2019 .

[48]  F. Weiguo,et al.  D ec 2 01 9 Rigid equivalences of 5-dimensional 2-nondegenerate rigid real hypersurfaces M 5 ⊂ C 3 of constant Levi rank 1 , 2019 .

[49]  M. Kolář A COMPLETE NORMAL FORM FOR EVERYWHERE LEVI DEGENERATE HYPERSURFACES IN C3 , 2019 .

[50]  P. Olver Normal Forms for Submanifolds Under Group Actions , 2018 .

[51]  F. Strazzullo Symmetry analysis of general rank-3 Pfaffian systems in five variables , 2009 .

[52]  Camille Bièche Le problème d’équivalence locale pour un système scalaire complet d’équations aux dérivées partielles d’ordre deux à n variables indépendantes , 2007 .

[53]  Александр Васильевич Лобода,et al.  Об определении однородной строго псевдо-выпуклой гиперповерхности по коэффициентам ее нормального уравнения@@@Determination of a Homogeneous Strictly Pseudoconvex Surface from the Coefficients of Its Normal Equation , 2003 .

[54]  P. Olver,et al.  Moving Coframes: II. Regularization and Theoretical Foundations , 1999 .

[55]  D. V. Alekseevskij,et al.  The Geometry of Differential Equations , 1991 .

[56]  G. Bluman,et al.  Symmetries and differential equations , 1989 .

[57]  P. Nurowski,et al.  Symmetries of Cauchy-Riemann spaces , 1988 .

[58]  M. Freeman Real submanifolds with degenerate Levi form , 1977 .

[59]  S. Shnider,et al.  Real hypersurfaces in complex manifolds , 1976 .

[60]  Mohsen Hachtroudi Sur les espaces de Riemann, de Weyl et de Schouten , 1956 .

[61]  Mohsen Hachtroudi Les espaces d'éléments à connexion projective normale , 1937 .

[62]  E. Cartan,et al.  Sur les variétés à connexion projective , 1924 .

[63]  E. Cartan,et al.  Les systèmes de Pfaff, à cinq variables et les équations aux dérivées partielles du second ordre , 1910 .

[64]  K. Wünschmann Über Berührungsbedingungen bei Integralkurven von Differentialgleichungen , 1905 .

[65]  A Tresse,et al.  Determination des invariants ponctuels de l'equation differentielle ordinaire du second ordre y'' = w(x, y, y') , 1896 .

[66]  Ar. Tresse,et al.  Sur les invariants différentiels des groupes continus de transformations , 1894 .