Optimization and Machine Learning Frameworks for Complex Network Analysis

Networks are all around us, and they may be connections of tangible objects in the Euclidean space such as electric power grids, the Internet, highways systems, etc. Among the wide range of areas in the network analysis, finding critical component in the large scale complex networks is one of the most challenging but fascinating problem in the network analysis. Analytical approaches of finding critical components have been widely studied and extensively used to investigate and provide meaningful characterizations of the intrinsic dynamics and properties of complex structures in networked systems. The objective of this thesis is to build novel mathematical models for finding critical components and connectivity patterns in complex networks that may reveal hidden, yet insightful, information for the investigation of underlying dynamics of the networks. In particular: -I propose mixed integer programming (MIP) models to seek k-Cardinality Tree (KCT) ,which address the finding critical components problem. I proposed seven variations of MIP models that are based on connected component constraints and subtour elimination constraints. Through the investigation of polyhedral structures and test results, the best performance model has been chosen and then we compared it with state of the art algorithm in the literature. -I expand our scope to find critical components in the labeled networks. I design two mathematical programming model to determine $k$-sized critical component including the most informative edges to classify the networks. As a first step, we develop mixed integer programming (MIP) model for finding critical components in the networked data classification. Due to the computationally intractability on the large scaled data, I built a branch-and-cut algorithm based on the Benders decomposition. -I also build a mixed integer nonlinear programming (MINLP) model based on the support vector machine (SVM) formulation. Rather than solving this MINLP directly, an efficient iterative algorithm combining with multiple kernel learning is proposed. To demonstrate the utility of the proposed models and solution approaches, synthetic networks and brain functional connectivity networks are used as case points in this thesis. Through the extensive experiments on both data sets, proposed approaches achieve impressive scalability and comparable or even better performance rather than the state-of-the-art methods. On human brain networks, the approaches are used to detect informative regions of interests (ROIs) and their connectivity patterns that may be useful in detecting people who are risk of developing neurological diseases.

[1]  Janaina Mourão Miranda,et al.  Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data , 2005, NeuroImage.

[2]  Wei Wang,et al.  Efficient mining of frequent subgraphs in the presence of isomorphism , 2003, Third IEEE International Conference on Data Mining.

[3]  Nuno Vasconcelos,et al.  Direct convex relaxations of sparse SVM , 2007, ICML '07.

[4]  R. Petersen Clinical practice. Mild cognitive impairment. , 2011, The New England journal of medicine.

[5]  H. Kubinyi Drug research: myths, hype and reality , 2003, Nature Reviews Drug Discovery.

[6]  S. Strogatz Exploring complex networks , 2001, Nature.

[7]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems , 1990, SIAM J. Discret. Math..

[8]  Liang Wang,et al.  Altered small‐world brain functional networks in children with attention‐deficit/hyperactivity disorder , 2009, Human brain mapping.

[9]  Jieping Ye,et al.  Efficient Methods for Overlapping Group Lasso , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Daoqiang Zhang,et al.  Structural Feature Selection for Connectivity Network-Based MCI Diagnosis , 2012, MBIA.

[11]  S. Houle,et al.  Combined insular and striatal dopamine dysfunction are associated with executive deficits in Parkinson's disease with mild cognitive impairment. , 2014, Brain : a journal of neurology.

[12]  Timothy O. Laumann,et al.  Functional Network Organization of the Human Brain , 2011, Neuron.

[13]  Cid C. de Souza,et al.  The edge-weighted clique problem: Valid inequalities, facets and polyhedral computations , 2000, Eur. J. Oper. Res..

[14]  Ralph-Axel Müller,et al.  Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism , 2015, NeuroImage: Clinical.

[15]  Simon Fong,et al.  Graph mining: A survey of graph mining techniques , 2012, Seventh International Conference on Digital Information Management (ICDIM 2012).

[16]  Cornelis J. Stam,et al.  Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain , 2008, NeuroImage.

[17]  S. Bornholdt,et al.  Handbook of Graphs and Networks , 2012 .

[18]  Karl J. Friston Functional and effective connectivity in neuroimaging: A synthesis , 1994 .

[19]  Alexandre Salles da Cunha,et al.  The k-Cardinality Tree Problem: Reformulations and Lagrangian Relaxation , 2010, Discret. Appl. Math..

[20]  Edward T. Bullmore,et al.  Neuroinformatics Original Research Article , 2022 .

[21]  Han Liu,et al.  Challenges of Big Data Analysis. , 2013, National science review.

[22]  Yong He,et al.  Graph-based network analysis of resting-state functional MRI. , 2010 .

[23]  Cid C. de Souza,et al.  New branch-and-bound algorithms for k-cardinality tree problems , 2011, Electron. Notes Discret. Math..

[24]  Markus Chimani,et al.  Obtaining Optimal k-Cardinality Trees Fast , 2008, ALENEX.

[26]  M N Rossor,et al.  Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease , 2001, Annals of neurology.

[27]  Darryl Stewart,et al.  Subband correlation and robust speech recognition , 2005, IEEE Transactions on Speech and Audio Processing.

[28]  David C. Zhu,et al.  Alzheimer's disease and amnestic mild cognitive impairment weaken connections within the default-mode network: a multi-modal imaging study. , 2013, Journal of Alzheimer's disease : JAD.

[29]  Wei Guan,et al.  Mixed-Integer Support Vector Machine , 2009 .

[30]  Aditya Bhaskara,et al.  Detecting high log-densities: an O(n¼) approximation for densest k-subgraph , 2010, STOC '10.

[31]  Dinggang Shen,et al.  Multiple-Network Classification of Childhood Autism Using Functional Connectivity Dynamics , 2014, MICCAI.

[32]  Christopher S. Monk,et al.  Alterations of resting state functional connectivity in the default network in adolescents with autism spectrum disorders , 2010, Brain Research.

[33]  Ting-Yi Sung,et al.  An analytical comparison of different formulations of the travelling salesman problem , 1991, Math. Program..

[34]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[35]  Virginia Vassilevska Efficient algorithms for clique problems , 2009 .

[36]  Xiaotong Shen,et al.  On L1-Norm Multiclass Support Vector Machines , 2007 .

[37]  Michael Poss,et al.  Benders Decomposition for the Hop-Constrained Survivable Network Design Problem , 2013, INFORMS J. Comput..

[38]  Eva K. Lee,et al.  Classification and Disease Prediction Via Mathematical Programming , 2007 .

[39]  Johannes O. Royset,et al.  On Solving Large-Scale Finite Minimax Problems Using Exponential Smoothing , 2011, J. Optim. Theory Appl..

[40]  Anne L. Foundas,et al.  Clinical Neuroanatomy: A Neurobehavioral Approach , 2007 .

[41]  Geng Li,et al.  Effective graph classification based on topological and label attributes , 2012, Stat. Anal. Data Min..

[42]  Christian Blum,et al.  Revisiting dynamic programming for finding optimal subtrees in trees , 2007, Eur. J. Oper. Res..

[43]  Yudong Zhang,et al.  An MR Brain Images Classifier System via Particle Swarm Optimization and Kernel Support Vector Machine , 2013, TheScientificWorldJournal.

[44]  Guillaume Obozinski,et al.  Sparse methods for machine learning Theory and algorithms , 2012 .

[45]  Julien Mairal,et al.  Convex optimization with sparsity-inducing norms , 2011 .

[46]  A. Ng Feature selection, L1 vs. L2 regularization, and rotational invariance , 2004, Twenty-first international conference on Machine learning - ICML '04.

[47]  G. Nemhauser,et al.  Integer Programming , 2020 .

[48]  Santosh S. Vempala,et al.  A Constant-Factor Approximation Algorithm for the k-MST Problem , 1999, J. Comput. Syst. Sci..

[49]  G. V. Van Hoesen,et al.  Orbitofrontal cortex pathology in Alzheimer's disease. , 2000, Cerebral cortex.

[50]  Jiawei Han,et al.  gSpan: graph-based substructure pattern mining , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[51]  Matteo Fischetti,et al.  Weighted k-cardinality trees: Complexity and polyhedral structure , 1994, Networks.

[52]  Shuiwang Ji,et al.  SLEP: Sparse Learning with Efficient Projections , 2011 .

[53]  Hanif D. Sherali,et al.  Exploiting Special Structures in Constructing a Hierarchy of Relaxations for 0-1 Mixed Integer Problems , 1998, Oper. Res..

[54]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[55]  R. Bixby,et al.  On the Solution of Traveling Salesman Problems , 1998 .

[56]  Sergiy Butenko,et al.  Clique Relaxations in Social Network Analysis: The Maximum k-Plex Problem , 2011, Oper. Res..

[57]  T. Prescott,et al.  The brainstem reticular formation is a small-world, not scale-free, network , 2006, Proceedings of the Royal Society B: Biological Sciences.

[58]  Felix Schmiedl,et al.  Threshold-based preprocessing for approximating the weighted dense k-subgraph problem , 2014, Eur. J. Oper. Res..

[59]  C. Sotelo,et al.  Viewing the brain through the master hand of Ramon y Cajal , 2003, Nature Reviews Neuroscience.

[60]  Ivor W. Tsang,et al.  Learning Sparse SVM for Feature Selection on Very High Dimensional Datasets , 2010, ICML.

[61]  S. Debener,et al.  Default-mode brain dysfunction in mental disorders: A systematic review , 2009, Neuroscience & Biobehavioral Reviews.

[62]  N. Mladenović,et al.  Variable neighborhood search for the k-cardinality tree , 2004 .

[63]  Francis R. Bach,et al.  Structured Variable Selection with Sparsity-Inducing Norms , 2009, J. Mach. Learn. Res..

[64]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[65]  Philip S. Yu,et al.  Discriminative frequent subgraph mining with optimality guarantees , 2010, Stat. Anal. Data Min..

[66]  M. Newman,et al.  The structure of scientific collaboration networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[67]  John C Gore,et al.  Assessing functional connectivity in the human brain by fMRI. , 2007, Magnetic resonance imaging.

[68]  Blair D. Sullivan,et al.  Tree-Like Structure in Large Social and Information Networks , 2013, 2013 IEEE 13th International Conference on Data Mining.

[69]  Pierre Baldi,et al.  Graph kernels for chemical informatics , 2005, Neural Networks.

[70]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[71]  Mouhamed Abdulla,et al.  On the Fundamentals of Stochastic Spatial Modeling and Analysis of Wireless Networks and its Impact to Channel Losses , 2012 .

[72]  D. Watts,et al.  Small Worlds: The Dynamics of Networks between Order and Randomness , 2001 .

[73]  Cornelis J Stam,et al.  Graph theoretical analysis of complex networks in the brain , 2007, Nonlinear biomedical physics.

[74]  Zenglin Xu,et al.  Non-monotonic feature selection , 2009, ICML '09.

[75]  P R Yarnold,et al.  Heart rate variability and susceptibility for sudden cardiac death: an example of multivariable optimal discriminant analysis. , 1994, Statistics in medicine.

[76]  Wei Pan,et al.  On constrained and regularized high-dimensional regression , 2013, Annals of the Institute of Statistical Mathematics.

[77]  Glenn Fung,et al.  Data selection for support vector machine classifiers , 2000, KDD '00.

[78]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[79]  Thomas Gärtner,et al.  Cyclic pattern kernels for predictive graph mining , 2004, KDD.

[80]  C Koch,et al.  Complexity and the nervous system. , 1999, Science.

[81]  Paul S. Bradley,et al.  Feature Selection via Concave Minimization and Support Vector Machines , 1998, ICML.

[82]  Robert D. Nowak,et al.  Sparse Overlapping Sets Lasso for Multitask Learning and its Application to fMRI Analysis , 2013, NIPS.

[83]  R. Tibshirani,et al.  Sparsity and smoothness via the fused lasso , 2005 .

[84]  C. Chang Dynamic programming as applied to feature subset selection in a pattern recognition system , 1972, ACM Annual Conference.

[85]  C. Windischberger,et al.  Quantification in functional magnetic resonance imaging: fuzzy clustering vs. correlation analysis. , 1998, Magnetic resonance imaging.

[86]  Daniel L. Rubin,et al.  Network Analysis of Intrinsic Functional Brain Connectivity in Alzheimer's Disease , 2008, PLoS Comput. Biol..

[87]  Alexandre Salles da Cunha,et al.  Polyhedral results and a Branch-and-cut algorithm for the $$k$$-cardinality tree problem , 2013, Math. Program..

[88]  E. Yeterian,et al.  MRI-Based Topographic Parcellation of Human Cerebral White Matter and Nuclei II. Rationale and Applications with Systematics of Cerebral Connectivity , 1999, NeuroImage.

[89]  David P. Williamson,et al.  A general approximation technique for constrained forest problems , 1992, SODA '92.

[90]  G. Cecchi,et al.  Scale-free brain functional networks. , 2003, Physical review letters.

[91]  W. Art Chaovalitwongse,et al.  A new linearization technique for multi-quadratic 0-1 programming problems , 2004, Oper. Res. Lett..

[92]  Ivor W. Tsang,et al.  Towards ultrahigh dimensional feature selection for big data , 2012, J. Mach. Learn. Res..

[93]  Kenneth O. Kortanek,et al.  Semi-Infinite Programming: Theory, Methods, and Applications , 1993, SIAM Rev..

[94]  Jeffrey R Petrella,et al.  Use of graph theory to evaluate brain networks: a clinical tool for a small world? , 2011, Radiology.

[95]  Jean-Philippe Vert,et al.  Group lasso with overlap and graph lasso , 2009, ICML '09.

[96]  E A Joachimsthaler,et al.  Mathematical Programming Approaches for the Classification Problem in Two-Group Discriminant Analysis. , 1990, Multivariate behavioral research.

[97]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[98]  N. Biggs,et al.  Graph Theory 1736-1936 , 1976 .

[99]  Dimitri P. Bertsekas,et al.  Network optimization : continuous and discrete models , 1998 .

[100]  Thomas Gärtner,et al.  On Graph Kernels: Hardness Results and Efficient Alternatives , 2003, COLT.

[101]  R. McMahon,et al.  The Roles of Reward, Default, and Executive Control Networks in Set-Shifting Impairments in Schizophrenia , 2013, PloS one.

[102]  Jieping Ye,et al.  Training SVM with indefinite kernels , 2008, ICML '08.

[103]  M. Sion On general minimax theorems , 1958 .

[104]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[105]  Hans-Peter Kriegel,et al.  Shortest-path kernels on graphs , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[106]  Edoardo Amaldi,et al.  On the Approximability of Minimizing Nonzero Variables or Unsatisfied Relations in Linear Systems , 1998, Theor. Comput. Sci..

[107]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations and Convex Hull Characterizations for Mixed-integer Zero-one Programming Problems , 1994, Discret. Appl. Math..

[108]  David N. Kennedy,et al.  MRI-Based Topographic Parcellation of Human Cerebral White Matter I. Technical Foundations , 1999, NeuroImage.

[109]  Fatos Xhafa,et al.  A C++ Implementation of of Tabu Search for k-cardinality tree problem based on generic programming and component reuse , 2000 .

[110]  V. Srinivasan,et al.  Multigroup Discriminant Analysis Using Linear Programming , 1997, Oper. Res..

[111]  Jason Weston,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2002, Machine Learning.

[112]  F. Toriumi,et al.  Classification of Social Network Sites based on Network Indexes and Communication Patterns , 2011 .

[113]  G. Glover,et al.  Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control , 2007, The Journal of Neuroscience.

[114]  Daniel S. Margulies,et al.  Functional connectivity of the human amygdala using resting state fMRI , 2009, NeuroImage.

[115]  Frans Coenen,et al.  Text Classification using Graph Mining-based Feature Extraction , 2010, SGAI Conf..

[116]  Hanif D. Sherali,et al.  On Tightening the Relaxations of Miller-Tucker-Zemlin Formulations for Asymmetric Traveling Salesman Problems , 2002, Oper. Res..

[117]  Vinod Menon,et al.  Functional connectivity in the resting brain: A network analysis of the default mode hypothesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[118]  André Langevin,et al.  CLASSIFICATION OF TRAVELING SALESMAN PROBLEM FORMULATIONS , 1988 .

[119]  Ivor W. Tsang,et al.  Tighter and Convex Maximum Margin Clustering , 2009, AISTATS.

[120]  Huan Liu,et al.  Feature selection for classification: A review , 2014 .

[121]  Ivor W. Tsang,et al.  A Convex Method for Locating Regions of Interest with Multi-instance Learning , 2009, ECML/PKDD.

[122]  Chee-Yee Chong,et al.  Sensor networks: evolution, opportunities, and challenges , 2003, Proc. IEEE.

[123]  Liang Wang,et al.  Parcellation‐dependent small‐world brain functional networks: A resting‐state fMRI study , 2009, Human brain mapping.

[124]  Christian Blum,et al.  New metaheuristic approaches for the edge-weighted k-cardinality tree problem , 2005, Comput. Oper. Res..

[125]  Stephen P. Boyd,et al.  A minimax theorem with applications to machine learning, signal processing, and finance , 2007, CDC.

[126]  Naveen Garg,et al.  Saving an epsilon: a 2-approximation for the k-MST problem in graphs , 2005, STOC '05.

[127]  Fred W. Glover,et al.  Solving the maximum edge weight clique problem via unconstrained quadratic programming , 2007, Eur. J. Oper. Res..

[128]  Horst Bunke,et al.  Graph Clustering Using the Weighted Minimum Common Supergraph , 2003, GbRPR.

[129]  Kaiming Li,et al.  Review of methods for functional brain connectivity detection using fMRI , 2009, Comput. Medical Imaging Graph..

[130]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[131]  Chih-Jen Lin,et al.  Solving quadratic semi-infinite programming problems by using relaxed cutting-plane scheme , 2001 .

[132]  D. Bertsimas,et al.  Best Subset Selection via a Modern Optimization Lens , 2015, 1507.03133.

[133]  Panos M. Pardalos,et al.  Handbook of optimization in medicine , 2009 .

[134]  E. Bullmore,et al.  Neurophysiological architecture of functional magnetic resonance images of human brain. , 2005, Cerebral cortex.

[135]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[136]  Minghe Sun,et al.  A Mathematical Programming Approach for Gene Selection and Tissue Classification , 2003, Bioinform..

[137]  F. Xhafa,et al.  A Memetic Algorithm for the Minimum Weighted k-Cardinality Tree Subgraph Problem , 2001 .

[138]  Yehoshua Perl,et al.  Clustering and domination in perfect graphs , 1984, Discret. Appl. Math..

[139]  Yves Grandvalet,et al.  More efficiency in multiple kernel learning , 2007, ICML '07.

[140]  Vince D. Calhoun,et al.  Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients , 2010, NeuroImage.

[141]  G. Frisoni,et al.  Functional network disruption in the degenerative dementias , 2011, The Lancet Neurology.

[142]  Jacques F. Benders,et al.  Partitioning procedures for solving mixed-variables programming problems , 2005, Comput. Manag. Sci..

[143]  E. Greenshtein Best subset selection, persistence in high-dimensional statistical learning and optimization under l1 constraint , 2006, math/0702684.

[144]  Philip S. Yu,et al.  Brain network analysis: a data mining perspective , 2014, SKDD.

[145]  Koushik Maharatna,et al.  Classification of autism spectrum disorder using supervised learning of brain connectivity measures extracted from synchrostates , 2014, Journal of neural engineering.

[146]  Alain Rakotomamonjy,et al.  Variable Selection Using SVM-based Criteria , 2003, J. Mach. Learn. Res..

[147]  David J. Hand,et al.  Discrimination and Classification , 1982 .

[148]  Seunghak Lee,et al.  Screening Rules for Overlapping Group Lasso , 2014, ArXiv.

[149]  Edward T. Bullmore,et al.  Efficiency and Cost of Economical Brain Functional Networks , 2007, PLoS Comput. Biol..

[150]  V. Menon,et al.  Saliency, switching, attention and control: a network model of insula function , 2010, Brain Structure and Function.

[151]  Sanjeev Arora,et al.  A 2 + ɛ approximation algorithm for the k-MST problem , 2000, SODA '00.

[152]  Grigorii Pivovarov,et al.  Clustering and Classification in Text Collections Using Graph Modularity , 2011, ArXiv.

[153]  Jonathan D. Power,et al.  Functional Brain Networks Develop from a “Local to Distributed” Organization , 2009, PLoS Comput. Biol..

[154]  Matthias Ehrgott,et al.  OR software - ORSEP operations research software exchange program Edited by Professor H.W. Hamacher K_TREE/K_SUBGRAPH: A program package for minimal weighted K-cardinality trees and subgraphs , 1996 .

[155]  Cornelis J. Stam,et al.  Resting-state functional connectivity as a marker of disease progression in Parkinson's disease: A longitudinal MEG study , 2013, NeuroImage: Clinical.

[156]  Massimo Filippi,et al.  Functional network connectivity in the behavioral variant of frontotemporal dementia , 2013, Cortex.

[157]  N. Makris,et al.  Gyri of the human neocortex: an MRI-based analysis of volume and variance. , 1998, Cerebral cortex.

[158]  Tong Zhang,et al.  A General Theory of Concave Regularization for High-Dimensional Sparse Estimation Problems , 2011, 1108.4988.

[159]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[160]  Yong He,et al.  Disrupted small-world networks in schizophrenia. , 2008, Brain : a journal of neurology.

[161]  Marco Loog,et al.  Network-Guided Group Feature Selection for Classification of Autism Spectrum Disorder , 2014, MLMI.

[162]  S. V. N. Vishwanathan,et al.  Multiple Kernel Learning and the SMO Algorithm , 2010, NIPS.

[163]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[164]  George B. Dantzig,et al.  Solution of a Large-Scale Traveling-Salesman Problem , 1954, Oper. Res..

[165]  V. Calhoun,et al.  Default mode network connectivity in stable vs progressive mild cognitive impairment , 2011, Neurology.

[166]  Christian Blum,et al.  Combining Ant Colony Optimization with Dynamic Programming for Solving the k-Cardinality Tree Problem , 2005, IWANN.

[167]  Guy Kortsarz,et al.  On choosing a dense subgraph , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[168]  Lalit M. Patnaik,et al.  Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network , 2006, Biomed. Signal Process. Control..

[169]  M. Greicius Resting-state functional connectivity in neuropsychiatric disorders , 2008, Current opinion in neurology.

[170]  Naveen Garg,et al.  A 3-approximation for the minimum tree spanning k vertices , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[171]  Zhengya Sun,et al.  L0-norm Based Structural Sparse Least Square Regression for Feature Selection , 2015, Pattern Recognit..

[172]  E. Bullmore,et al.  A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs , 2006, The Journal of Neuroscience.

[173]  Paul A. Rubin,et al.  Combinatorial Benders Cuts for the Minimum Tollbooth Problem , 2009, Oper. Res..

[174]  Shilpa Chakravartula,et al.  Complex Networks: Structure and Dynamics , 2014 .

[175]  Gilbert Laporte,et al.  Improvements and extensions to the Miller-Tucker-Zemlin subtour elimination constraints , 1991, Oper. Res. Lett..

[176]  Zhaosong Lu,et al.  Penalty Decomposition Methods for $L0$-Norm Minimization , 2010, ArXiv.

[177]  Fred Glover,et al.  LINEAR PROGRAMMING AND STATISTICAL DISCRIMINATION THE LP SIDE , 1982 .

[178]  C. Stam Modern network science of neurological disorders , 2014, Nature Reviews Neuroscience.

[179]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[180]  Edwin R. Hancock,et al.  Spectral Feature Vectors for Graph Clustering , 2002, SSPR/SPR.

[181]  Chih-Jen Lin,et al.  A Comparison of Optimization Methods and Software for Large-scale L1-regularized Linear Classification , 2010, J. Mach. Learn. Res..

[182]  Sean Wilkinson,et al.  Identifying Critical Components in Infrastructure Networks Using Network Topology , 2013 .

[183]  Ewald Moser,et al.  On the origin of respiratory artifacts in BOLD-EPI of the human brain. , 2002, Magnetic resonance imaging.

[184]  M. Ehrgott,et al.  Heuristics for the K-Cardinality Tree and Subgraph Problems , 1996 .

[185]  Lionel M. Ni China's National Research Project on Wireless Sensor Networks , 2008, SUTC.

[186]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[187]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[188]  Nello Cristianini,et al.  Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..

[189]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[190]  Hongliang Fei,et al.  Structure feature selection for graph classification , 2008, CIKM '08.

[191]  J. Xiong,et al.  Detecting functional connectivity in the resting brain: a comparison between ICA and CCA. , 2007, Magnetic resonance imaging.

[192]  Christian Blum,et al.  Local Search Algorithms for the k-cardinality Tree Problem , 2003, Discret. Appl. Math..

[193]  Shengrui Wang,et al.  Median graph computation for graph clustering , 2006, Soft Comput..

[194]  George Karypis,et al.  Frequent Substructure-Based Approaches for Classifying Chemical Compounds , 2005, IEEE Trans. Knowl. Data Eng..

[195]  Cun-Hui Zhang,et al.  The sparsity and bias of the Lasso selection in high-dimensional linear regression , 2008, 0808.0967.