Comparative nucleic acid chaperone properties of the nucleocapsid protein NCp7 and Tat protein of HIV-1

[1]  Wei-Shau Hu,et al.  HIV-1 reverse transcription. , 2012, Cold Spring Harbor perspectives in medicine.

[2]  K. Anderson,et al.  Nucleocapsid protein annealing of a primer-template enhances (+)-strand DNA synthesis and fidelity by HIV-1 reverse transcriptase. , 2012, Journal of molecular biology.

[3]  F. Penin,et al.  Analysis of the RNA chaperoning activity of the hepatitis C virus core protein on the conserved 3′X region of the viral genome , 2011, Nucleic acids research.

[4]  J. Darlix,et al.  A single zinc finger optimizes the DNA interactions of the nucleocapsid protein of the yeast retrotransposon Ty3 , 2011, Nucleic acids research.

[5]  J. Darlix,et al.  Flexible nature and specific functions of the HIV-1 nucleocapsid protein. , 2011, Journal of molecular biology.

[6]  C. Gabus,et al.  Analysis of nucleic acid chaperoning by the prion protein and its inhibition by oligonucleotides , 2011, Nucleic acids research.

[7]  J. Darlix,et al.  Structural determinants of TAR RNA-DNA annealing in the absence and presence of HIV-1 nucleocapsid protein , 2011, Nucleic acids research.

[8]  J. Darlix,et al.  Specific implications of the HIV-1 nucleocapsid zinc fingers in the annealing of the primer binding site complementary sequences during the obligatory plus strand transfer , 2011, Nucleic acids research.

[9]  B. Fürtig,et al.  Transient RNA–protein interactions in RNA folding , 2011, The FEBS journal.

[10]  B. Fürtig,et al.  The RNA annealing mechanism of the HIV-1 Tat peptide: conversion of the RNA into an annealing-competent conformation , 2011, Nucleic acids research.

[11]  R. Gorelick,et al.  Features, processing states, and heterologous protein interactions in the modulation of the retroviral nucleocapsid protein function , 2010, RNA biology.

[12]  S. Woodson Taming free energy landscapes with RNA chaperones , 2010, RNA biology.

[13]  A. Rein Nucleic acid chaperone activity of retroviral Gag proteins , 2010, RNA biology.

[14]  Y. Mély,et al.  Biophysical studies of the nucleic acid chaperone properties of the HIV-1 nucleocapsid protein , 2010, RNA biology.

[15]  X. Zhuang,et al.  Initiation complex dynamics direct the transitions between distinct phases of early HIV reverse transcription , 2010, Nature Structural &Molecular Biology.

[16]  R. Gorelick,et al.  Fundamental differences between the nucleic acid chaperone activities of HIV-1 nucleocapsid protein and Gag or Gag-derived proteins: biological implications. , 2010, Virology.

[17]  J. Darlix,et al.  The mechanism of HIV-1 Tat-directed nucleic acid annealing supports its role in reverse transcription. , 2010, Journal of molecular biology.

[18]  T. Pan,et al.  Profiling non-lysyl tRNAs in HIV-1. , 2010, RNA.

[19]  C. Ehresmann,et al.  Initiation of HIV Reverse Transcription , 2010, Viruses.

[20]  J. Darlix,et al.  Mechanism of HIV-1 Tat RNA translation and its activation by the Tat protein , 2009, Retrovirology.

[21]  Kristen K. Dang,et al.  Architecture and Secondary Structure of an Entire HIV-1 RNA Genome , 2009, Nature.

[22]  L. Kleiman,et al.  Roles of Gag and NCp7 in facilitating tRNA(Lys)(3) Annealing to viral RNA in human immunodeficiency virus type 1. , 2009, Journal of virology.

[23]  K. Musier-Forsyth,et al.  Fluorescence fluctuation spectroscopy on viral-like particles reveals variable gag stoichiometry. , 2009, Biophysical journal.

[24]  K. Musier-Forsyth,et al.  HIV-1 nucleocapsid protein switches the pathway of transactivation response element RNA/DNA annealing from loop-loop "kissing" to "zipper". , 2009, Journal of molecular biology.

[25]  Y. Mély,et al.  Site-specific characterization of HIV-1 nucleocapsid protein binding to oligonucleotides with two binding sites. , 2009, Biochemistry.

[26]  K. Musier-Forsyth,et al.  Fidelity of plus-strand priming requires the nucleic acid chaperone activity of HIV-1 nucleocapsid protein , 2009, Nucleic acids research.

[27]  Yves Mély,et al.  How the HIV-1 nucleocapsid protein binds and destabilises the (-)primer binding site during reverse transcription. , 2008, Journal of molecular biology.

[28]  Dina Grohmann,et al.  HIV-1 nucleocapsid traps reverse transcriptase on nucleic acid substrates. , 2008, Biochemistry.

[29]  J. DeStefano,et al.  A new role for HIV nucleocapsid protein in modulating the specificity of plus strand priming. , 2008, Virology.

[30]  I. Sola,et al.  Role of RNA chaperones in virus replication , 2008, Virus Research.

[31]  K. Musier-Forsyth,et al.  Retroviral Nucleocapsid Proteins Display Nonequivalent Levels of Nucleic Acid Chaperone Activity , 2008, Journal of Virology.

[32]  Y. Mély,et al.  Modulation of microtubule assembly by the HIV-1 Tat protein is strongly dependent on zinc binding to Tat , 2008, Retrovirology.

[33]  R. Bambara,et al.  Strand transfer events during HIV-1 reverse transcription. , 2008, Virus research.

[34]  C. Gabus,et al.  The HIV-1 transcriptional activator Tat has potent nucleic acid chaperoning activities in vitro , 2008, Nucleic acids research.

[35]  Morgan C. Giddings,et al.  High-Throughput SHAPE Analysis Reveals Structures in HIV-1 Genomic RNA Strongly Conserved across Distinct Biological States , 2008, PLoS biology.

[36]  D. Ficheux,et al.  Investigating the mechanism of the nucleocapsid protein chaperoning of the second strand transfer during HIV-1 DNA synthesis. , 2007, Journal of molecular biology.

[37]  R. Schroeder,et al.  Dissecting RNA chaperone activity. , 2007, RNA.

[38]  Caroline Gabus,et al.  RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae , 2007, Nucleic acids research.

[39]  Y. Mély,et al.  Probing dynamics of HIV-1 nucleocapsid protein/target hexanucleotide complexes by 2-aminopurine , 2007, Nucleic acids research.

[40]  C. Tisné,et al.  New insights into the formation of HIV-1 reverse transcription initiation complex. , 2007, Biochimie.

[41]  R. Schroeder,et al.  Coupling RNA annealing and strand displacement: a FRET-based microplate reader assay for RNA chaperone activity. , 2007, BioTechniques.

[42]  D. Harrich,et al.  The HIV-1 Tat protein stimulates reverse transcription in vitro. , 2007, Current HIV research.

[43]  R. Gorelick,et al.  HIV-1 Protease and Reverse Transcriptase Control the Architecture of Their Nucleocapsid Partner , 2007, PLoS ONE.

[44]  R. Gorelick,et al.  Vif is a RNA chaperone that could temporally regulate RNA dimerization and the early steps of HIV-1 reverse transcription , 2007, Nucleic acids research.

[45]  R. Konrat,et al.  RNA Chaperones, RNA Annealers and RNA Helicases , 2007, RNA biology.

[46]  J. G. Levin,et al.  Effects of nucleic acid local structure and magnesium ions on minus-strand transfer mediated by the nucleic acid chaperone activity of HIV-1 nucleocapsid protein , 2007, Nucleic acids research.

[47]  A. Lambowitz,et al.  Probing the mechanisms of DEAD-box proteins as general RNA chaperones: the C-terminal domain of CYT-19 mediates general recognition of RNA. , 2007, Biochemistry.

[48]  K. Jeang,et al.  HIV-1 Tat interaction with Dicer: requirement for RNA , 2006, Retrovirology.

[49]  K. Musier-Forsyth,et al.  Rapid kinetics of protein-nucleic acid interaction is a major component of HIV-1 nucleocapsid protein's nucleic acid chaperone function. , 2006, Journal of molecular biology.

[50]  K. Musier-Forsyth,et al.  Mechanistic studies of mini-TAR RNA/DNA annealing in the absence and presence of HIV-1 nucleocapsid protein. , 2006, Journal of molecular biology.

[51]  A. Dunker,et al.  Disorder and sequence repeats in hub proteins and their implications for network evolution. , 2006, Journal of proteome research.

[52]  I. Sola,et al.  Coronavirus nucleocapsid protein is an RNA chaperone , 2006, Virology.

[53]  K. Nagashima,et al.  Proteomic and Biochemical Analysis of Purified Human Immunodeficiency Virus Type 1 Produced from Infected Monocyte-Derived Macrophages , 2006, Journal of Virology.

[54]  M. Mir,et al.  Characterization of the RNA Chaperone Activity of Hantavirus Nucleocapsid Protein , 2006, Journal of Virology.

[55]  F. Penin,et al.  Analysis of hepatitis C virus RNA dimerization and core–RNA interactions , 2006, Nucleic acids research.

[56]  A. Bibiłło,et al.  Nucleotide Excision Repair and Template-independent Addition by HIV-1 Reverse Transcriptase in the Presence of Nucleocapsid Protein* , 2006, Journal of Biological Chemistry.

[57]  R. Berro,et al.  Acetylated Tat Regulates Human Immunodeficiency Virus Type 1 Splicing through Its Interaction with the Splicing Regulator p32 , 2006, Journal of Virology.

[58]  D. Ficheux,et al.  During the early phase of HIV-1 DNA synthesis, nucleocapsid protein directs hybridization of the TAR complementary sequences via the ends of their double-stranded stem. , 2006, Journal of molecular biology.

[59]  J. DeStefano,et al.  Poliovirus Protein 3AB Displays Nucleic Acid Chaperone and Helix-Destabilizing Activities , 2006, Journal of Virology.

[60]  Christy F Landes,et al.  Evidence for non-two-state kinetics in the nucleocapsid protein chaperoned opening of DNA hairpins. , 2006, The journal of physical chemistry. B.

[61]  R. Gorelick,et al.  Nucleic acid binding and chaperone properties of HIV-1 Gag and nucleocapsid proteins , 2006, Nucleic acids research.

[62]  Y. Mély,et al.  Investigation by fluorescence correlation spectroscopy of the chaperoning interactions of HIV-1 nucleocapsid protein with the viral DNA initiation sequences. , 2005, Comptes rendus biologies.

[63]  Aurélia Belisova,et al.  RNA chaperone activity of protein components of human Ro RNPs. , 2005, RNA.

[64]  P. Tompa The interplay between structure and function in intrinsically unstructured proteins , 2005, FEBS letters.

[65]  J. Smiley Faculty Opinions recommendation of Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. , 2005 .

[66]  R. Schroeder,et al.  Assays for the RNA chaperone activity of proteins. , 2005, Biochemical Society transactions.

[67]  B. Roques,et al.  Structural determinants of HIV-1 nucleocapsid protein for cTAR DNA binding and destabilization, and correlation with inhibition of self-primed DNA synthesis. , 2005, Journal of molecular biology.

[68]  S. Le,et al.  Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. , 2005, Immunity.

[69]  M. Wainberg,et al.  A HIV-1 minimal gag protein is superior to nucleocapsid at in vitro annealing and exhibits multimerization-induced inhibition of reverse transcription. , 2005, The Journal of biological chemistry.

[70]  C. Tisné Structural bases of the annealing of primer tRNA(3Lys) to the HIV-1 viral RNA. , 2005, Current HIV research.

[71]  H. Dyson,et al.  Intrinsically unstructured proteins and their functions , 2005, Nature Reviews Molecular Cell Biology.

[72]  M. Mir,et al.  The Hantavirus Nucleocapsid Protein Recognizes Specific Features of the Viral RNA Panhandle and Is Altered in Conformation upon RNA Binding , 2005, Journal of Virology.

[73]  Albert Y. Chen,et al.  Characterization and application of the selective strand annealing activity of the N terminal domain of hepatitis delta antigen , 2004, FEBS letters.

[74]  R. Green,et al.  RNA chaperone activity of large ribosomal subunit proteins from Escherichia coli. , 2004, RNA.

[75]  Eddy Pasquier,et al.  The Glutamine-rich Region of the HIV-1 Tat Protein Is Involved in T-cell Apoptosis* , 2004, Journal of Biological Chemistry.

[76]  Andrea Barta,et al.  Strategies for RNA folding and assembly , 2004, Nature Reviews Molecular Cell Biology.

[77]  P. Barbara,et al.  Secondary structure and secondary structure dynamics of DNA hairpins complexed with HIV-1 NC protein. , 2004, Biophysical journal.

[78]  B. Roques,et al.  HIV-1 nucleocapsid protein binds to the viral DNA initiation sequences and chaperones their kissing interactions. , 2004, Journal of molecular biology.

[79]  J. Darlix,et al.  The chaperoning and assistance roles of the HIV-1 nucleocapsid protein in proviral DNA synthesis and maintenance. , 2004, Current HIV research.

[80]  C. Ehresmann,et al.  Structural Variability of the Initiation Complex of HIV-1 Reverse Transcription* , 2004, Journal of Biological Chemistry.

[81]  Peter Tompa,et al.  The role of structural disorder in the function of RNA and protein chaperones , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[82]  Marc C. Johnson,et al.  The stoichiometry of Gag protein in HIV-1 , 2004, Nature Structural &Molecular Biology.

[83]  F. Penin,et al.  The hepatitis C virus Core protein is a potent nucleic acid chaperone that directs dimerization of the viral (+) strand RNA in vitro. , 2004, Nucleic acids research.

[84]  Karin Musier-Forsyth,et al.  Mechanistic insights into the kinetics of HIV-1 nucleocapsid protein-facilitated tRNA annealing to the primer binding site. , 2004, Journal of molecular biology.

[85]  B. Roques,et al.  The Annealing Mechanism of HIV-1 Reverse Transcription Primer onto the Viral Genome* , 2004, Journal of Biological Chemistry.

[86]  Tsung-Cheng Chang,et al.  Nucleic acid binding properties of the nucleic acid chaperone domain of hepatitis delta antigen. , 2003, Nucleic acids research.

[87]  D. Harrich,et al.  Human Immunodeficiency Virus Type 1 Protease Regulation of Tat Activity Is Essential for Efficient Reverse Transcription and Replication , 2003, Journal of Virology.

[88]  J. Barciszewski,et al.  On the importance of the primer activation signal for initiation of tRNA(lys3)-primed reverse transcription of the HIV-1 RNA genome. , 2003, Nucleic acids research.

[89]  B. Roques,et al.  Specific recognition of primer tRNA Lys 3 by HIV-1 nucleocapsid protein: involvement of the zinc fingers and the N-terminal basic extension. , 2003, Biochimie.

[90]  A. E. Rosen,et al.  Efficient initiation of HIV-1 reverse transcription in vitro. Requirement for RNA sequences downstream of the primer binding site abrogated by nucleocapsid protein-dependent primer-template interactions. , 2003, The Journal of biological chemistry.

[91]  B. Roques,et al.  Impact of the terminal bulges of HIV-1 cTAR DNA on its stability and the destabilizing activity of the nucleocapsid protein NCp7. , 2003, Journal of molecular biology.

[92]  Jui-Ling Wang,et al.  Selective Strand Annealing and Selective Strand Exchange Promoted by the N-terminal Domain of Hepatitis Delta Antigen* , 2003, The Journal of Biological Chemistry.

[93]  B. Roques,et al.  Destabilization of the HIV-1 complementary sequence of TAR by the nucleocapsid protein through activation of conformational fluctuations. , 2003, Journal of molecular biology.

[94]  Qiang Zhou,et al.  HIV‐1 Tat targets microtubules to induce apoptosis, a process promoted by the pro‐apoptotic Bcl‐2 relative Bim , 2002, The EMBO journal.

[95]  C. Ehresmann,et al.  Direct and Indirect Contributions of RNA Secondary Structure Elements to the Initiation of HIV-1 Reverse Transcription* , 2002, The Journal of Biological Chemistry.

[96]  T. Rana,et al.  Tat stimulates cotranscriptional capping of HIV mRNA. , 2002, Molecular cell.

[97]  J. Lorsch RNA Chaperones Exist and DEAD Box Proteins Get a Life , 2002, Cell.

[98]  R. Karpel,et al.  HIV-1 nucleocapsid protein as a nucleic acid chaperone: spectroscopic study of its helix-destabilizing properties, structural binding specificity, and annealing activity. , 2002, Journal of molecular biology.

[99]  M. Wainberg,et al.  The Tat Protein of Human Immunodeficiency Virus Type 1 (HIV-1) Can Promote Placement of tRNA Primer onto Viral RNA and Suppress Later DNA Polymerization in HIV-1 Reverse Transcription , 2002, Journal of Virology.

[100]  B. Roques,et al.  HIV-1 nucleocapsid protein activates transient melting of least stable parts of the secondary structure of TAR and its complementary sequence. , 2002, Journal of Molecular Biology.

[101]  B. Berkhout,et al.  The tRNA Primer Activation Signal in the Human Immunodeficiency Virus Type 1 Genome Is Important for Initiation and Processive Elongation of Reverse Transcription , 2002, Journal of Virology.

[102]  X. Zhuang,et al.  Exploring the folding landscape of a structured RNA , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[103]  M. Wainberg,et al.  HIV-1 Nucleocapsid Protein and the Secondary Structure of the Binary Complex Formed between tRNALys.3 and Viral RNA Template Play Different Roles during Initiation of (−) Strand DNA Reverse Transcription* , 2001, The Journal of Biological Chemistry.

[104]  R. Schroeder,et al.  Folding of the td pre-RNA with the help of the RNA chaperone StpA. , 2001, Biochemical Society transactions.

[105]  K. Musier-Forsyth,et al.  HIV-1 nucleocapsid protein zinc finger structures induce tRNA(Lys,3) structural changes but are not critical for primer/template annealing. , 2001, Journal of molecular biology.

[106]  H. Huthoff,et al.  Structural features in the HIV-1 repeat region facilitate strand transfer during reverse transcription. , 2001, RNA.

[107]  M. Marchisio,et al.  Characterization of HIV-1 Tat proteins mutated in the transactivation domain for prophylactic and therapeutic application. , 2001, Vaccine.

[108]  K. Musier-Forsyth,et al.  Mechanism for nucleic acid chaperone activity of HIV-1 nucleocapsid protein revealed by single molecule stretching , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[109]  E. Le Cam,et al.  Human Immunodeficiency Virus Type 1 Central DNA Flap: Dynamic Terminal Product of Plus-Strand Displacement DNA Synthesis Catalyzed by Reverse Transcriptase Assisted by Nucleocapsid Protein , 2001, Journal of Virology.

[110]  M. Wainberg,et al.  Role for Human Immunodeficiency Virus Type 1 Tat Protein in Suppression of Viral Reverse Transcriptase Activity during Late Stages of Viral Replication , 2001, Journal of Virology.

[111]  B. Roques,et al.  Heteronuclear NMR studies of the interaction of tRNA3Lys with HIV-1 nucleocapsid protein , 2001 .

[112]  S. Hughes,et al.  Human Immunodeficiency Virus Type 1 Nucleocapsid Protein Can Prevent Self-Priming of Minus-Strand Strong Stop DNA by Promoting the Annealing of Short Oligonucleotides to Hairpin Sequences , 2000, Journal of Virology.

[113]  Jianhui Guo,et al.  Zinc Finger Structures in the Human Immunodeficiency Virus Type 1 Nucleocapsid Protein Facilitate Efficient Minus- and Plus-Strand Transfer , 2000, Journal of Virology.

[114]  J G Levin,et al.  A mechanism for plus-strand transfer enhancement by the HIV-1 nucleocapsid protein during reverse transcription. , 2000, Biochemistry.

[115]  M. Negroni,et al.  Copy-choice recombination by reverse transcriptases: reshuffling of genetic markers mediated by RNA chaperones. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[116]  K. Dill,et al.  RNA folding energy landscapes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[117]  H. Dyson,et al.  Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. , 1999, Journal of molecular biology.

[118]  K. Jeang,et al.  Multifaceted Activities of the HIV-1 Transactivator of Transcription, Tat* , 1999, The Journal of Biological Chemistry.

[119]  R. Schroeder,et al.  Assaying RNA chaperone activity in vivo using a novel RNA folding trap , 1999, The EMBO journal.

[120]  D. K. Treiber,et al.  Exposing the kinetic traps in RNA folding. , 1999, Current opinion in structural biology.

[121]  C. Ehresmann,et al.  The Human Immunodeficiency Virus Type 1 Gag Polyprotein Has Nucleic Acid Chaperone Activity: Possible Role in Dimerization of Genomic RNA and Placement of tRNA on the Primer Binding Site , 1999, Journal of Virology.

[122]  M. Wainberg,et al.  The Role of Pr55gag in the Annealing of tRNA3Lys to Human Immunodeficiency Virus Type 1 Genomic RNA , 1999, Journal of Virology.

[123]  R. Gaynor,et al.  Functional Domains of Tat Required for Efficient Human Immunodeficiency Virus Type 1 Reverse Transcription , 1999, Journal of Virology.

[124]  A. Rein,et al.  In Vitro Assembly Properties of Human Immunodeficiency Virus Type 1 Gag Protein Lacking the p6 Domain , 1999, Journal of Virology.

[125]  E. Westhof,et al.  Structural basis for the specificity of the initiation of HIV‐1 reverse transcription , 1999, The EMBO journal.

[126]  S. L. Le Grice,et al.  Role of Post-transcriptional Modifications of Primer tRNALys,3 in the Fidelity and Efficacy of Plus Strand DNA Transfer during HIV-1 Reverse Transcription* , 1999, The Journal of Biological Chemistry.

[127]  Zhi-Shun Huang,et al.  Identification and Characterization of the RNA Chaperone Activity of Hepatitis Delta Antigen Peptides* , 1998, The Journal of Biological Chemistry.

[128]  C. Ehresmann,et al.  Contacts between Reverse Transcriptase and the Primer Strand Govern the Transition from Initiation to Elongation of HIV-1 Reverse Transcription* , 1998, The Journal of Biological Chemistry.

[129]  M. Wainberg,et al.  Mechanistic Studies of Early Pausing Events during Initiation of HIV-1 Reverse Transcription* , 1998, The Journal of Biological Chemistry.

[130]  A. Rein,et al.  Nucleic-acid-chaperone activity of retroviral nucleocapsid proteins: significance for viral replication. , 1998, Trends in biochemical sciences.

[131]  C. Ehresmann,et al.  Mutational analysis of the tRNA3Lys/HIV-1 RNA (primer/template) complex. , 1998, Nucleic acids research.

[132]  K. Musier-Forsyth,et al.  The nucleocapsid protein specifically anneals tRNALys-3 onto a noncomplementary primer binding site within the HIV-1 RNA genome in vitro. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[133]  W. Brandt,et al.  The N-terminal Structure of HIV-1 Tat Is Required for Suppression of CD26-dependent T Cell Growth* , 1997, The Journal of Biological Chemistry.

[134]  J. Mak,et al.  Primer tRNAs for reverse transcription , 1997, Journal of virology.

[135]  Priscille Brodin,et al.  A Truncated HIV-1 Tat Protein Basic Domain Rapidly Translocates through the Plasma Membrane and Accumulates in the Cell Nucleus* , 1997, The Journal of Biological Chemistry.

[136]  D. Thirumalai,et al.  Kinetic partitioning mechanism as a unifying theme in the folding of biomolecules , 1997, cond-mat/9704067.

[137]  R. Gaynor,et al.  Tat is required for efficient HIV‐1 reverse transcription , 1997, The EMBO journal.

[138]  B. Roques,et al.  Ordered aggregation of ribonucleic acids by the human immunodeficiency virus type 1 nucleocapsid protein. , 1997, Biopolymers.

[139]  M. Wainberg,et al.  Primer tRNA3Lys on the viral genome exists in unextended and two-base extended forms within mature human immunodeficiency virus type 1 , 1997, Journal of virology.

[140]  C. Ehresmann,et al.  Binding and kinetic properties of HIV‐1 reverse transcriptase markedly differ during initiation and elongation of reverse transcription. , 1996, The EMBO journal.

[141]  B. Berkhout,et al.  HIV-1 reverse transcriptase discriminates against non-self tRNA primers. , 1996, Journal of molecular biology.

[142]  K. Jeang,et al.  Requirements for RNA Polymerase II Carboxyl-terminal Domain for Activated Transcription of Human Retroviruses Human T-Cell Lymphotropic Virus I and HIV-1* , 1996, The Journal of Biological Chemistry.

[143]  H. Okamoto,et al.  Trans-activation by human immunodeficiency virus Tat protein requires the C-terminal domain of RNA polymerase II. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[144]  M. Wainberg,et al.  Human immunodeficiency virus Type 1 nucleocapsid protein (NCp7) directs specific initiation of minus-strand DNA synthesis primed by human tRNA(Lys3) in vitro: studies of viral RNA molecules mutated in regions that flank the primer binding site , 1996, Journal of virology.

[145]  C. Ehresmann,et al.  Specific initiation and switch to elongation of human immunodeficiency virus type 1 reverse transcription require the post‐transcriptional modifications of primer tRNA3Lys. , 1996, The EMBO journal.

[146]  B. Roques,et al.  First glimpses at structure-function relationships of the nucleocapsid protein of retroviruses. , 1995, Journal of molecular biology.

[147]  C. Gabus,et al.  Formation of stable and functional HIV-1 nucleoprotein complexes in vitro. , 1995, Journal of molecular biology.

[148]  M. Belfort,et al.  Escherichia coli protein StpA stimulates self-splicing by promoting RNA assembly in vitro. , 1995, RNA.

[149]  D. Herschlag RNA Chaperones and the RNA Folding Problem (*) , 1995, The Journal of Biological Chemistry.

[150]  Mary Lapadat-Tapolsky,et al.  Analysis of the nucleic acid annealing activities of nucleocapsid protein from HIV-1 , 1995, Nucleic Acids Res..

[151]  C. McHenry,et al.  Human immunodeficiency virus nucleocapsid protein accelerates strand transfer of the terminally redundant sequences involved in reverse transcription. , 1994, The Journal of biological chemistry.

[152]  N. Jullian,et al.  Spatial proximity of the HIV-1 nucleocapsid protein zinc fingers investigated by time-resolved fluorescence and fluorescence resonance energy transfer. , 1994, Biochemistry.

[153]  P. Brown,et al.  DNA strand exchange and selective DNA annealing promoted by the human immunodeficiency virus type 1 nucleocapsid protein , 1994, Journal of virology.

[154]  H. Buc,et al.  HIV-1 reverse transcription. A termination step at the center of the genome. , 1994, Journal of molecular biology.

[155]  M. Belfort,et al.  Escherichia coli proteins, including ribosomal protein S12, facilitate in vitro splicing of phage T4 introns by acting as RNA chaperones. , 1994, Genes & development.

[156]  J. Rossi,et al.  Facilitation of hammerhead ribozyme catalysis by the nucleocapsid protein of HIV‐1 and the heterogeneous nuclear ribonucleoprotein A1. , 1994, The EMBO journal.

[157]  N. Jullian,et al.  Conformational behaviour of the active and inactive forms of the nucleocapsid NCp7 of HIV-1 studied by 1H NMR. , 1994, Journal of molecular biology.

[158]  R. Gallo,et al.  The Tat protein of human immunodeficiency virus type 1, a growth factor for AIDS Kaposi sarcoma and cytokine-activated vascular cells, induces adhesion of the same cell types by using integrin receptors recognizing the RGD amino acid sequence. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[159]  B. Roques,et al.  Trans-activation of the 5' to 3' viral DNA strand transfer by nucleocapsid protein during reverse transcription of HIV1 RNA. , 1993, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[160]  J. Mak,et al.  Identification of tRNAs incorporated into wild-type and mutant human immunodeficiency virus type 1 , 1993, Journal of virology.

[161]  S. L. Le Grice,et al.  Analysis of the interactions of HIV1 replication primer tRNA(Lys,3) with nucleocapsid protein and reverse transcriptase. , 1993, Journal of molecular biology.

[162]  Weinberger,et al.  RNA folding and combinatory landscapes. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[163]  R. Plasterk,et al.  Interactions between HIV-1 nucleocapsid protein and viral DNA may have important functions in the viral life cycle. , 1993, Nucleic acids research.

[164]  D. Giedroc,et al.  Retroviral nucleocapsid proteins possess potent nucleic acid strand renaturation activity , 1993, Protein science : a publication of the Protein Society.

[165]  C. Ehresmann,et al.  Functional sites in the 5' region of human immunodeficiency virus type 1 RNA form defined structural domains. , 1993, Journal of molecular biology.

[166]  N. Jullian,et al.  Determination of the structure of the nucleocapsid protein NCp7 from the human immunodeficiency virus type 1 by 1H NMR. , 1992, The EMBO journal.

[167]  B. Roques,et al.  Viral RNA annealing activities of human immunodeficiency virus type 1 nucleocapsid protein require only peptide domains outside the zinc fingers. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[168]  D. Baltimore,et al.  The role of Tat in the human immunodeficiency virus life cycle indicates a primary effect on transcriptional elongation. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[169]  F. Barré-Sinoussi,et al.  Cis elements and trans-acting factors involved in the RNA dimerization of the human immunodeficiency virus HIV-1. , 1990, Journal of molecular biology.

[170]  F. Barré-Sinoussi,et al.  HIV‐1 reverse transcriptase specifically interacts with the anticodon domain of its cognate primer tRNA. , 1989, The EMBO journal.

[171]  M. Mathews,et al.  HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation , 1989, Cell.

[172]  A. Srinivasan,et al.  Multiple functional domains of Tat, the trans-activator of HIV-1, defined by mutational analysis. , 1989, Nucleic acids research.

[173]  C. Pabo,et al.  Dimerization of the tat protein from human immunodeficiency virus: a cysteine-rich peptide mimics the normal metal-linked dimer interface. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[174]  C. Gabus,et al.  Small finger protein of avian and murine retroviruses has nucleic acid annealing activity and positions the replication primer tRNA onto genomic RNA. , 1988, The EMBO journal.

[175]  D. Bredt,et al.  Tat protein from human immunodeficiency virus forms a metal-linked dimer. , 1988, Science.

[176]  J. Darlix,et al.  Fuzziness in the core of the human pathogenic viruses HCV and HIV. , 2012, Advances in experimental medicine and biology.

[177]  Monika Fuxreiter,et al.  Fuzzy complexes: a more stochastic view of protein function. , 2012, Advances in experimental medicine and biology.

[178]  M. Giacca Retrovirology BioMed Central Commentary HIV-1 Tat, apoptosis and the mitochondria: a tubulin link? , 2005 .

[179]  K. Musier-Forsyth,et al.  Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism. , 2005, Progress in nucleic acid research and molecular biology.

[180]  J. Darlix,et al.  The ubiquitous nature of RNA chaperone proteins. , 2002, Progress in nucleic acid research and molecular biology.

[181]  J. Karn,et al.  Tackling Tat. , 1999, Journal of molecular biology.