Geometries and energies of the excited states of O3 from ab initio potential energy surfaces

The geometries and relative energies of the nine lowest states of the ozone molecule have been determined in C2v symmetry from ab initio configuration interaction calculations in a [3s2p1d] contracted Gaussian basis. Calculations were carried out over a two‐dimensional grid of points in C2v symmetry to locate the optimum geometrical parameters R and ϑ for each state. For the ground 1A1 state the calculated properties (with experimental values in parentheses) are as follows: Re=1.299 A (1.271 A), ϑe=116.0° (116.8°), ω1=1235 cm−1 (1110 cm−1) and ω2=707 cm−1 (705 cm−1). Of the excited states only the lowest 3B2 state is found to have an adiabatic excitation energy (0.92 eV) less than the dissociation energy (De=1.13 eV) and hence to be a likely bound species. The 1B2 state responsible for the strong absorption in the Hartley band (4.7–5.8 eV) is stabilized by asymmetric distortions away from its equilibrium C2v geometry (Re=1.405 A, ϑe=108°) suggesting unequal bond lengths for this state or else purely disso...

[1]  Yoshio Tanaka,et al.  Absorption Coefficient of Ozone in the Ultraviolet and Visible Regions , 1953 .

[2]  Ernest Vigroux,et al.  Contribution à l'étude expérimentale de l'absorption de l'ozone , 1953 .

[3]  R. Hughes Structure of Ozone from the Microwave Spectrum between 9000 and 45 000 Mc , 1956 .

[4]  R. S. Mulliken THE LOWER EXCITED STATES OF SOME SIMPLE MOLECULES , 1958 .

[5]  A. Hearn The Absorption of Ozone in the Ultra-violet and Visible Regions of the Spectrum , 1961 .

[6]  W. Demore,et al.  Reaction of O(1D) with Nitrogen , 1962 .

[7]  W. Demore,et al.  Hartley band extinction coefficients of ozone in the gas phase and in liquid nitrogen, carbon monoxide, and argon. , 1964 .

[8]  J. C. Slater ELECTRONIC STRUCTURE OF POLYATOMIC MOLECULES , 1964 .

[9]  W. Demore,et al.  Primary processes in ozone photolysis. , 1966 .

[10]  S. Peyerimhoff,et al.  Geometry of Ozone and Azide Ion in Ground and Certain Excited States , 1967 .

[11]  I. Shavitt,et al.  An application of perturbation theory ideas in configuration interaction calculations , 1968 .

[12]  R. Wayne,et al.  The formation, reaction and deactivation of O2(1Ʃ+g) , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[13]  J. A. Ghormley,et al.  Vibrationally Excited Ozone in the Pulse Radiolysis and Flash Photolysis of Oxygen , 1968 .

[14]  M. Griggs,et al.  Absorption Coefficients of Ozone in the Ultraviolet and Visible Regions , 1968 .

[15]  S. Huzinaga,et al.  Gaussian‐Type Functions for Polyatomic Systems. II , 1970 .

[16]  J. F. Riley,et al.  Absorption Spectrum of the Ozone Precursor , 1970 .

[17]  Takehiko Tanaka,et al.  Coriolis interaction and anharmonic potential function of ozone from the microwave spectra in the excited vibrational states , 1970 .

[18]  K. Welge,et al.  Photodissociation of O3 in the Hartley Band. Reactions of O(1D) and O2(1Σg+) with O3 and O2 , 1971 .

[19]  M. Gauthier,et al.  Mechanism of Singlet Molecular Oxygen Formation from Photolysis of Ozone at 2537 Å , 1971 .

[20]  S. Clough,et al.  Millimeter wave spectrum of ozone , 1971 .

[21]  H. Schaefer,et al.  Self-consistent-field wave functions, energies, multipole moments, diamagnetic susceptibility and shielding tensors, and electric field gradient tensors for nitrogen dioxide and ozone , 1971 .

[22]  P. Hay,et al.  Theoretical results for the excited states of ozone , 1972 .

[23]  William A. Goddard,et al.  Self‐Consistent Procedures for Generalized Valence Bond Wavefunctions. Applications H3, BH, H2O, C2H6, and O2 , 1972 .

[24]  E. F. Hayes,et al.  Non-empirical SCF studies of the ring and open forms of ozone , 1973 .

[25]  W. Goddard,et al.  Theoretical evidence for bound electronic excited states of ozone , 1973 .

[26]  W. Goddard,et al.  Generalized valence bond description of bonding in low-lying states of molecules , 1973 .

[27]  James S. Wright,et al.  Theoretical evidence for a stable form of cyclic ozone and its chemical consequences , 1973 .

[28]  E. Bair,et al.  Ozone ultraviolet photolysis. VI. The ultraviolet spectrum , 1973 .

[29]  A. Devaquet,et al.  Unsymmetrical 1B2 (ππ∗) state of ozone , 1973 .

[30]  M. Newton,et al.  Ab initio studies of interoxygen bonding in O2, HO2, H2O2, O3, HO3, and H2O3 , 1973 .

[31]  R. Cvetanovic Excited State Chemistry in the Stratosphere , 1974 .

[32]  C. W. Rosenberg,et al.  Vibrational excitation of ozone formed by recombination , 1974 .

[33]  Robert J. Buenker,et al.  Theoretical investigation of the cyclic conformer of ozone , 1974 .

[34]  D. Grimbert,et al.  Strongly bent excited states of ozone , 1974 .

[35]  R. Celotta,et al.  Observation of Excited States in Ozone near the Dissociation Limit , 1975 .

[36]  E. Talaty,et al.  SIMPLE AB INITIO STUDIES OF THE ISOMERS OF N2H2, LI2O, C3H4 AND O3 , 1975 .

[37]  William A. Goddard,et al.  Configuration interaction studies of O3 and O+3. Ground and excited states , 1975 .

[38]  D. Trainor,et al.  Excitation of ozone formed by recombination. II , 1975 .

[39]  D. M. Hirst Ab initio non-paired spatial orbital wavefunctions , 1976 .

[40]  R. P. Messmer,et al.  Molecular orbital study of the ground and excited states of ozone , 1976 .

[41]  P. Hay,et al.  Polarization CI wavefunctions: the valence states of the NH radical , 1976 .

[42]  P. Jeffrey Hay,et al.  Gaussian Basis Sets for Molecular Calculations , 1977 .