Under the assumption of the generalized Riemann Hyothesis verifying the class number belongs to NPcapCo-NP
暂无分享,去创建一个
[1] H. W. Lenstra,et al. Approximatting rings of integers in number fields. , 1994 .
[2] H. Lenstra,et al. Algorithms in algebraic number theory , 1992, math/9204234.
[3] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .
[4] Johannes A. Buchmann,et al. On Principal Ideal Testing in Algebraic Number Fields , 1987, J. Symb. Comput..
[5] Arnold Schönhage. Factorization of Univariate Integer Polynomials by Diophantine Aproximation and an Improved Basis Reduction Algorithm , 1984, ICALP.
[6] W. Narkiewicz. Elementary and Analytic Theory of Algebraic Numbers , 1990 .
[7] David K. Smith. Theory of Linear and Integer Programming , 1987 .
[8] Johannes Buchmann,et al. On short representations of orders and number fields , 1992 .
[9] Rainer Zimmert,et al. Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung , 1980 .
[10] C. Siegel,et al. Abschätzung von Einheiten , 1979 .
[11] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[12] Johannes Buchmann,et al. On the period length of the generalized Lagrange algorithm , 1987 .
[13] Johannes A. Buchmann,et al. Reducing lattice bases by means of approximations , 1994, ANTS.
[14] Johannes A. Buchmann,et al. Some remarks concerning the complexity of computing class groups of quadratic fields , 1991, J. Complex..
[15] J. Buchmann. On the computation of units and class numbers by a generalization of Lagrange's algorithm , 1987 .
[16] H. C. Williams,et al. Short Representation of Quadratic Integers , 1995 .
[17] Johannes Buchmann,et al. On the computation of the class number of an algebraic number field , 1989 .