Under the assumption of the generalized Riemann Hyothesis verifying the class number belongs to NPcapCo-NP

We show that under the assumption of a certain Generalized Riemann Hypothesis the problem of verifying the value of the class number of an arbitrary algebraic number field F of arbitrary degree belongs to the complexity class NP ∩ co-NP. In order to prove this result we introduce a compact representation of algebraic integers which allows us to represent a system of fundamental units by (2 + log2(Δ))O(1) bits, where Δ is the discriminant of F.

[1]  H. W. Lenstra,et al.  Approximatting rings of integers in number fields. , 1994 .

[2]  H. Lenstra,et al.  Algorithms in algebraic number theory , 1992, math/9204234.

[3]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[4]  Johannes A. Buchmann,et al.  On Principal Ideal Testing in Algebraic Number Fields , 1987, J. Symb. Comput..

[5]  Arnold Schönhage Factorization of Univariate Integer Polynomials by Diophantine Aproximation and an Improved Basis Reduction Algorithm , 1984, ICALP.

[6]  W. Narkiewicz Elementary and Analytic Theory of Algebraic Numbers , 1990 .

[7]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[8]  Johannes Buchmann,et al.  On short representations of orders and number fields , 1992 .

[9]  Rainer Zimmert,et al.  Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung , 1980 .

[10]  C. Siegel,et al.  Abschätzung von Einheiten , 1979 .

[11]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[12]  Johannes Buchmann,et al.  On the period length of the generalized Lagrange algorithm , 1987 .

[13]  Johannes A. Buchmann,et al.  Reducing lattice bases by means of approximations , 1994, ANTS.

[14]  Johannes A. Buchmann,et al.  Some remarks concerning the complexity of computing class groups of quadratic fields , 1991, J. Complex..

[15]  J. Buchmann On the computation of units and class numbers by a generalization of Lagrange's algorithm , 1987 .

[16]  H. C. Williams,et al.  Short Representation of Quadratic Integers , 1995 .

[17]  Johannes Buchmann,et al.  On the computation of the class number of an algebraic number field , 1989 .