Effects of Support Structures in an LES Actuator Line Model of a Tidal Turbine with Contra-Rotating Rotors

Computational fluid dynamics is used to study the impact of the support structure of a tidal turbine on performance and the downstream wake characteristics. A high-fidelity computational model of a dual rotor, contra-rotating tidal turbine in a large channel domain is presented, with turbulence modelled using large eddy simulation. Actuator lines represent the turbine blades, permitting the analysis of transient flow features and turbine diagnostics. The following four cases are considered: the flow in an unexploited, empty channel; flow in a channel containing the rotors; flow in a channel containing the support structure; and flow in a channel with both rotors and support structure. The results indicate that the support structure contributes significantly to the behaviour of the turbine and to turbulence levels downstream, even when the rotors are upstream. This implies that inclusion of the turbine structure, or some parametrisation thereof, is a prerequisite for the realistic prediction of turbine performance and reliability, particularly for array layouts where wake effects become significant.

[1]  D. S. Coles,et al.  Resource assessment of large marine current turbine arrays , 2013, 2013 OCEANS - San Diego.

[2]  Gareth Harrison,et al.  Life cycle assessment of the Seagen marine current turbine , 2008 .

[3]  I. Afgan,et al.  Turbulent flow and loading on a tidal stream turbine by LES and RANS , 2013 .

[4]  禰津 家久,et al.  Turbulence in open-channel flows , 1993 .

[5]  B. Lange,et al.  Comparison of Wake Model Simulations with Offshore Wind Turbine Wake Profiles Measured by Sodar , 2006 .

[6]  Paul Mycek,et al.  Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine , 2014 .

[7]  Craig L. Stevens,et al.  Numerical modelling of the effect of turbines on currents in a tidal channel – Tory Channel, New Zealand , 2013 .

[8]  J. Bentham,et al.  Microscale modelling of air flow and pollutant dispersion in the urban environment , 2004 .

[9]  Daphne Maria O'Doherty,et al.  The effect of tidal flow directionality on tidal turbine performance characteristics , 2015 .

[10]  T. Thiringer,et al.  Influence of tidal parameters on SeaGen flicker performance , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  I. Afgan,et al.  CFD simulations of a full-scale tidal turbine: comparison of LES and RANS with field data , 2015 .

[12]  G. T. Melville,et al.  Tidal current resource assessment , 2007 .

[13]  F. Porté-Agel,et al.  Large-Eddy Simulation of Wind-Turbine Wakes: Evaluation of Turbine Parametrisations , 2011 .

[14]  Takafumi Nishino,et al.  Investigation of tidal turbine array tuning using 3D Reynolds-Averaged Navier–Stokes Simulations , 2015 .

[15]  N. Jensen A note on wind generator interaction , 1983 .

[16]  Iehisa Nezu,et al.  Turbulence in open-channel flows , 1993 .

[17]  Carol E. Sparling,et al.  Strangford Lough and the SeaGen Tidal Turbine , 2014 .

[18]  G. W. Jones,et al.  Aerodynamic forces on a stationary and oscillating circular cylinder at high Reynolds numbers , 1969 .

[19]  S. Monismith,et al.  Measurements of Reynolds stress profiles in unstratified tidal flow , 1999 .

[20]  Jens Nørkær Sørensen,et al.  Numerical Modeling of Wind Turbine Wakes , 2002 .

[21]  S. Neill,et al.  The impact of tidal stream turbines on large-scale sediment dynamics , 2009 .

[22]  Charles Meneveau,et al.  Generalized Smagorinsky model for anisotropic grids , 1993 .

[23]  Rajnish N. Sharma,et al.  Characteristics of the Onset Flow Turbulence at a Tidal-Stream Power Site , 2011 .

[24]  B. R. Baliga,et al.  A NEW FINITE-ELEMENT FORMULATION FOR CONVECTION-DIFFUSION PROBLEMS , 1980 .

[25]  Angus Creech,et al.  Modelling wind turbine wakes for wind farms , 2016 .

[26]  A. Roshko Experiments on the flow past a circular cylinder at very high Reynolds number , 1961, Journal of Fluid Mechanics.

[27]  R. Willden,et al.  Effects of 3-D channel blockage and turbulent wake mixing on the limit of power extraction by tidal turbines , 2012 .

[28]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[29]  N. Fueyo,et al.  Large Eddy Simulation of the flow past a square cylinder , 2004 .

[30]  E. Achenbach,et al.  Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re = 5 × 106 , 1968, Journal of Fluid Mechanics.

[31]  A. E. Maguire,et al.  Simulations of an Offshore Wind Farm Using Large-Eddy Simulation and a Torque-Controlled Actuator Disc Model , 2014, Surveys in Geophysics.

[32]  A. Roshko,et al.  Experiments on flow past rough circular cylinders at large Reynolds numbers , 1993 .

[33]  E. Migoya,et al.  Large-eddy simulation of spectral coherence in a wind turbine wake , 2008 .

[34]  Iain Fairley,et al.  A Comparison of Numerical Modelling Techniques for Tidal Stream Turbine Analysis , 2015 .

[35]  Thomas Hahm,et al.  3D-simulation of the turbulent wake behind a wind turbine , 2007 .

[36]  Scott Draper,et al.  The available power from tidal stream turbines in the Pentland Firth , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[37]  Wolf-Gerrit Fruh,et al.  Actuator volumes and hr-adaptive methods for three-dimensional simulation of wind turbine wakes and performance , 2012 .

[38]  P. Moriarty,et al.  A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[39]  T. Stallard,et al.  Experimental study of the mean wake of a tidal stream rotor in a shallow turbulent flow , 2015 .

[40]  P. Fraenkel Practical tidal turbine design considerations: a review of technical alternatives and key design decisions leading to the development of the SeaGen 1.2MW tidal turbine , 2022 .

[41]  Jens Nørkær Sørensen,et al.  Numerical simulations of wake characteristics of a wind turbine in uniform inflow , 2010 .

[42]  Wolf-Gerrit Fruh,et al.  Modelling the aerodynamic response of a wind turbine blade passing in front of the tower , 2008 .

[43]  C. C. Pain,et al.  h, r, and hr adaptivity with applications in numerical ocean modelling , 2005 .

[44]  I. Owen,et al.  Near-wake characteristics of a model horizontal axis tidal stream turbine , 2014 .

[45]  Daphne Maria O'Doherty,et al.  Influence of a velocity profile & support structure on tidal stream turbine performance , 2013 .

[46]  Jeppe Johansen,et al.  Wind turbine airfoil catalogue , 2001 .

[47]  John R. Chaplin,et al.  Steady flow past a vertical surface-piercing circular cylinder , 2003 .

[48]  T. Stallard,et al.  Interactions between tidal turbine wakes: experimental study of a group of three-bladed rotors , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[49]  Christopher C. Pain,et al.  A finite element LES methodology for anisotropic inhomogeneous meshes , 2012 .

[50]  Mehmet Atlar,et al.  Flow separation impacts on the hydrodynamic performance analysis of a marine current turbine using CFD , 2013 .

[51]  S. Benhamadouche,et al.  A synthetic-eddy-method for generating inflow conditions for large-eddy simulations , 2006 .

[52]  P. L. Fraenkel Marine current turbines: Pioneering the development of marine kinetic energy converters , 2007 .

[53]  B. Koren,et al.  Review of computational fluid dynamics for wind turbine wake aerodynamics , 2011 .

[54]  P. Moin,et al.  Approximate Wall Boundary Conditions in the Large-Eddy Simulation of High Reynolds Number Flow , 2000 .

[55]  T. Stallard,et al.  Comparison of a RANS blade element model for tidal turbine arrays with laboratory scale measurements of wake velocity and rotor thrust , 2016 .

[56]  J. Simpson,et al.  Reynolds Stress and Turbulent Energy Production in a Tidal Channel , 2002 .

[57]  A. E. Maguire,et al.  High-resolution CFD modelling of Lillgrund Wind farm , 2013 .

[58]  Ye Li,et al.  Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine , 2011 .

[59]  Stefano Leonardi,et al.  A large-eddy simulation of wind-plant aerodynamics , 2012 .

[60]  L. E. Myers,et al.  Near wake properties of horizontal axis marine current turbines , 2009 .

[61]  WEI Zhigang,et al.  Prediction of high Reynolds number flow , 2007 .

[62]  Mark A. Shields,et al.  Marine Renewable Energy Technology and Environmental Interactions , 2014 .

[63]  Fernando Porté-Agel,et al.  Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms , 2011 .

[64]  Peter Stansby,et al.  A simple sliding‐mesh interface procedure and its application to the CFD simulation of a tidal‐stream turbine , 2014 .

[65]  Simon W. Funke,et al.  Tidal turbine array optimisation using the adjoint approach , 2013, ArXiv.

[66]  Angus C. W. Creech,et al.  A three-dimensional numerical model of a horizontal axis, energy extracting turbine : an implementation on a parallel computing system , 2009 .

[67]  J. Deardorff A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers , 1970, Journal of Fluid Mechanics.

[68]  L. E. Myers,et al.  Simulated electrical power potential harnessed by marine current turbine arrays in the Alderney Race , 2005 .

[69]  A. Bahaj,et al.  Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbines , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[70]  Noel K. Delany,et al.  Low-speed drag of cylinders of various shapes , 1953 .