Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes

Genome sequencing of the model legumes, Medicago truncatula and Lotus japonicus, provides an opportunity for large-scale sequence-based comparison of two genomes in the same plant family. Here we report synteny comparisons between these species, including details about chromosome relationships, large-scale synteny blocks, microsynteny within blocks, and genome regions lacking clear correspondence. The Lotus and Medicago genomes share a minimum of 10 large-scale synteny blocks, each with substantial collinearity and frequently extending the length of whole chromosome arms. The proportion of genes syntenic and collinear within each synteny block is relatively homogeneous. Medicago–Lotus comparisons also indicate similar and largely homogeneous gene densities, although gene-containing regions in Mt occupy 20–30% more space than Lj counterparts, primarily because of larger numbers of Mt retrotransposons. Because the interpretation of genome comparisons is complicated by large-scale genome duplications, we describe synteny, synonymous substitutions and phylogenetic analyses to identify and date a probable whole-genome duplication event. There is no direct evidence for any recent large-scale genome duplication in either Medicago or Lotus but instead a duplication predating speciation. Phylogenetic comparisons place this duplication within the Rosid I clade, clearly after the split between legumes and Salicaceae (poplar).

[1]  H. Owen,et al.  New Phytol , 2008 .

[2]  J. Botto,et al.  The plant cell , 2007, Plant Molecular Biology Reporter.

[3]  C. Kankasa,et al.  Socioeconomic and reproductive factors associated with condom use within and outside of marriage among urban pregnant women in Zambia. , 2005, African journal of reproductive health.

[4]  Zhilei Chen,et al.  A highly sensitive selection method for directed evolution of homing endonucleases , 2005, Nucleic acids research.

[5]  Rod A Wing,et al.  Sequence, annotation, and analysis of synteny between rice chromosome 3 and diverged grass species. , 2005, Genome research.

[6]  B. Roe,et al.  Highly syntenic regions in the genomes of soybean, Medicago truncatula, and Arabidopsis thaliana , 2005, BMC Plant Biology.

[7]  M. Wojciechowski,et al.  Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. , 2005, Systematic biology.

[8]  J. Jurka,et al.  Repbase Update, a database of eukaryotic repetitive elements , 2005, Cytogenetic and Genome Research.

[9]  P. Rouzé,et al.  EST data suggest that poplar is an ancient polyploid. , 2005, The New phytologist.

[10]  R. Shoemaker,et al.  Placing paleopolyploidy in relation to taxon divergence: a phylogenetic analysis in legumes using 39 gene families. , 2005, Systematic biology.

[11]  Fredrik Dahl,et al.  Multiplex amplification enabled by selective circularization of large sets of genomic DNA fragments , 2005, Nucleic acids research.

[12]  J. Raes,et al.  Modeling gene and genome duplications in eukaryotes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[13]  B. Roe,et al.  Sequencing the Genespaces of Medicago truncatula and Lotus japonicus1 , 2005, Plant Physiology.

[14]  B. Ekele,et al.  Is serum magnesium estimate necessary in patients with eclampsia on magnesium sulphate? , 2005, African journal of reproductive health.

[15]  R. Shoemaker,et al.  Bridging Model and Crop Legumes through Comparative Genomics , 2005, Plant Physiology.

[16]  Dawei Li,et al.  The Genomes of Oryza sativa: A History of Duplications , 2005, PLoS biology.

[17]  John Quackenbush,et al.  The TIGR Gene Indices: clustering and assembling EST and known genes and integration with eukaryotic genomes , 2004, Nucleic Acids Res..

[18]  Cathy H. Wu,et al.  The Universal Protein Resource (UniProt) , 2004, Nucleic Acids Res..

[19]  B. Roe,et al.  Estimating genome conservation between crop and model legume species. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  B. Roe,et al.  Satellite repeats in the functional centromere and pericentromeric heterochromatin of Medicago truncatula , 2004, Chromosoma.

[21]  Yves Van de Peer,et al.  Computational approaches to unveiling ancient genome duplications , 2004, Nature Reviews Genetics.

[22]  Jessica A Schlueter,et al.  Mining EST databases to resolve evolutionary events in major crop species. , 2004, Genome.

[23]  Guillaume Blanc,et al.  Widespread Paleopolyploidy in Model Plant Species Inferred from Age Distributions of Duplicate Genes , 2004, The Plant Cell Online.

[24]  Y. Saeys,et al.  Building genomic profiles for uncovering segmental homology in the twilight zone. , 2004, Genome research.

[25]  R. Shoemaker,et al.  Comparative physical mapping reveals features of microsynteny between Glycine max, Medicago truncatula, and Arabidopsis thaliana. , 2004, Genome.

[26]  T. Bisseling,et al.  Microsynteny between pea and Medicago truncatula in the SYM2 region , 2002, Plant Molecular Biology.

[27]  N. Young,et al.  Comparative genome analysis of mungbean (Vigna radiata L. Wilczek) and cowpea (V. unguiculata L. Walpers) using RFLP mapping data , 1993, Theoretical and Applied Genetics.

[28]  W. R. McCombie,et al.  Evolution and microsynteny of the apyrase gene family in three legume genomes , 2003, Molecular Genetics and Genomics.

[29]  S. Cannon,et al.  DiagHunter and GenoPix2D: programs for genomic comparisons, large-scale homology discovery and visualization , 2003, Genome Biology.

[30]  William Nelson,et al.  Locating sequence on FPC maps and selecting a minimal tiling path. , 2003, Genome research.

[31]  Thomas Schiex,et al.  EUGÈNE'HOM: a generic similarity-based gene finder using multiple homologous sequences , 2003, Nucleic Acids Res..

[32]  N. Young,et al.  Legume genomes: more than peas in a pod. , 2003, Current opinion in plant biology.

[33]  Brad A. Chapman,et al.  Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events , 2003, Nature.

[34]  M. Luckow,et al.  The Rest of the Iceberg. Legume Diversity and Evolution in a Phylogenetic Context1 , 2003, Plant Physiology.

[35]  Klaas Vandepoele,et al.  The hidden duplication past of Arabidopsis thaliana , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. Stougaard,et al.  Chromosomal map of the model legume Lotus japonicus. , 2002, Genetics.

[37]  S. Salzberg,et al.  Fast algorithms for large-scale genome alignment and comparison. , 2002, Nucleic acids research.

[38]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[39]  Steven B Cannon,et al.  Phylogeny and genomic organization of the TIR and non-tIR NBS-LRR resistance gene family in Medicago truncatula. , 2002, Molecular plant-microbe interactions : MPMI.

[40]  T. Bisseling,et al.  Integration of the FISH pachytene and genetic maps of Medicago truncatula. , 2001, The Plant journal : for cell and molecular biology.

[41]  Z. Gu,et al.  Evolutionary analyses of the human genome , 2001, Nature.

[42]  M Taketa,et al.  Construction of a genetic linkage map of the model legume Lotus japonicus using an intraspecific F2 population. , 2001, DNA research : an international journal for rapid publication of reports on genes and genomes.

[43]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[44]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[45]  R. Shoemaker,et al.  Mapping of duplicate genes in soybean , 1999 .

[46]  D. Shibata,et al.  Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Stefan Kurtz,et al.  REPuter: fast computation of maximal repeats in complete genomes , 1999, Bioinform..

[48]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[49]  C. Simon,et al.  Construction of a Chickpea Linkage Map and Its Comparison With Maps of Pea and Lentil , 1997 .

[50]  R. Shoemaker,et al.  Genome conservation among three legume genera detected with DNA markers. , 1995, Genome.

[51]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[52]  N. Goldman,et al.  A codon-based model of nucleotide substitution for protein-coding DNA sequences. , 1994, Molecular biology and evolution.

[53]  B. Bainbridge,et al.  Genetics , 1981, Experientia.