Edge Matching Puzzles as Hard SAT/CSP Benchmarks

Recently, edge matching puzzles, an NP-complete problem, have received, thanks to money-prized contests, considerable attention from wide audiences. This paper studies edge matching puzzles focusing on providing generation models of problem instances of variable hardness and on its resolution through the application of SAT and CSP techniques. From the generation side, we also identify the phase transition phenomena for each model. As solving methods, we employ both; SAT solvers through the translation to a SAT formula, and two ad-hoc CSP solvers we have developed, with different levels of consistency, employing generic and specialized heuristics. Finally, we conducted an extensive experimental investigation to identify the hardest generation models and the best performing solving techniques.

[1]  Robert M. Haralick,et al.  Increasing Tree Search Efficiency for Constraint Satisfaction Problems , 1979, Artif. Intell..

[2]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[3]  Jean-Charles Régin,et al.  A Filtering Algorithm for Constraints of Difference in CSPs , 1994, AAAI.

[4]  Christian Bessiere,et al.  MAC and Combined Heuristics: Two Reasons to Forsake FC (and CBJ?) on Hard Problems , 1996, CP.

[5]  Patrick Prosser,et al.  An Empirical Study of Phase Transitions in Binary Constraint Satisfaction Problems , 1996, Artif. Intell..

[6]  Martin E. Dyer,et al.  Locating the Phase Transition in Binary Constraint Satisfaction Problems , 1996, Artif. Intell..

[7]  Chu Min Li,et al.  Heuristics Based on Unit Propagation for Satisfiability Problems , 1997, IJCAI.

[8]  Rémi Monasson,et al.  Determining computational complexity from characteristic ‘phase transitions’ , 1999, Nature.

[9]  Jean-Charles Régin The Symmetric Alldiff Constraint , 1999, IJCAI.

[10]  Bart Selman,et al.  Generating Satisfiable Problem Instances , 2000, AAAI/IAAI.

[11]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[12]  Niklas Sörensson,et al.  An Extensible SAT-solver , 2003, SAT.

[13]  Pascal Van Hentenryck,et al.  Comet in context , 2003, PCK50.

[14]  Carlos Ansótegui,et al.  Modeling Choices in Quasigroup Completion: SAT vs. CSP , 2004, AAAI.

[15]  Carlos Ansótegui,et al.  Mapping many-valued CNF formulas to Boolean CNF formulas , 2005, 35th International Symposium on Multiple-Valued Logic (ISMVL'05).

[16]  Armin Biere,et al.  Effective Preprocessing in SAT Through Variable and Clause Elimination , 2005, SAT.

[17]  Assaf Naor,et al.  Rigorous location of phase transitions in hard optimization problems , 2005, Nature.

[18]  Matti Järvisalo Further Investigations into Regular XORSAT , 2006, AAAI.

[19]  Toby Walsh,et al.  Tetravex is NP-complete , 2006, Inf. Process. Lett..

[20]  Peter Jeavons,et al.  Symmetry Definitions for Constraint Satisfaction Problems , 2005, Constraints.

[21]  Ian P. Gent,et al.  Watched Literals for Constraint Propagation in Minion , 2006, CP.

[22]  Petteri Kaski,et al.  Hard Satisfiable Clause Sets for Benchmarking Equivalence Reasoning Techniques , 2006, J. Satisf. Boolean Model. Comput..

[23]  Niklas Sörensson,et al.  Translating Pseudo-Boolean Constraints into SAT , 2006, J. Satisf. Boolean Model. Comput..

[24]  Bart Selman,et al.  Survey Propagation Revisited , 2007, UAI.

[25]  Andrei A. Bulatov,et al.  On the Power of k -Consistency , 2007, ICALP.

[26]  Erik D. Demaine,et al.  Jigsaw Puzzles, Edge Matching, and Polyomino Packing: Connections and Complexity , 2007, Graphs Comb..

[27]  Roman Barták,et al.  Constraint Processing , 2009, Encyclopedia of Artificial Intelligence.