Polymertropism of rod-shaped bacteria: movement along aligned polysaccharide fibers

[1]  J. D’Cunha The matrix revisited. , 2018, The Journal of thoracic and cardiovascular surgery.

[2]  Kristopher W. Kolewe,et al.  Conjugation in Escherichia coli Biofilms on Poly(dimethylsiloxane) Surfaces with Microtopographic Patterns. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[3]  L. Aravind,et al.  The mechanism of force transmission at bacterial focal adhesion complexes , 2016, Nature.

[4]  S. Rice,et al.  Biofilms: an emergent form of bacterial life , 2016, Nature Reviews Microbiology.

[5]  M. Auer,et al.  Exopolysaccharide microchannels direct bacterial motility and organize multicellular behavior , 2016, The ISME Journal.

[6]  M. Singer,et al.  A Minimal Threshold of c-di-GMP Is Essential for Fruiting Body Formation and Sporulation in Myxococcus xanthus , 2016, PLoS genetics.

[7]  Xiaomei Lu,et al.  Structural Basis for Translocation of a Biofilm-supporting Exopolysaccharide across the Bacterial Outer Membrane* , 2016, The Journal of Biological Chemistry.

[8]  Tâm Mignot,et al.  The mysterious nature of bacterial surface (gliding) motility: A focal adhesion-based mechanism in Myxococcus xanthus. , 2015, Seminars in cell & developmental biology.

[9]  N. Abbott,et al.  Effects of confinement, surface-induced orientations and strain on dynamical behaviors of bacteria in thin liquid crystalline films. , 2015, Soft matter.

[10]  Oleg A. Igoshin,et al.  Mechanism for Collective Cell Alignment in Myxococcus xanthus Bacteria , 2015, PLoS Comput. Biol..

[11]  H. Koo,et al.  Effects of Material Properties on Bacterial Adhesion and Biofilm Formation , 2015, Journal of dental research.

[12]  Spomenka Kobe,et al.  The influence of surface modification on bacterial adhesion to titanium-based substrates. , 2015, ACS applied materials & interfaces.

[13]  Geetha Manivasagam,et al.  Bacterial adherence and biofilm formation on medical implants: A review , 2014, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[14]  Christopher S. Chen,et al.  Long Range Force Transmission in Fibrous Matrices Enabled by Tension-Driven Alignment of Fibers , 2014, bioRxiv.

[15]  Jessica K. Polka,et al.  Induced sensitivity of Bacillus subtilis colony morphology to mechanical media compression , 2014, bioRxiv.

[16]  N. Abbott,et al.  Using liquid crystals to reveal how mechanical anisotropy changes interfacial behaviors of motile bacteria. , 2014, Biophysical Journal.

[17]  M. Caffrey,et al.  A conformational landscape for alginate secretion across the outer membrane of Pseudomonas aeruginosa , 2014, Acta crystallographica. Section D, Biological crystallography.

[18]  I. Aranson,et al.  Living liquid crystals , 2013, Proceedings of the National Academy of Sciences.

[19]  M. Woodley,et al.  Variation in the Morphology of Bacillus mycoides Due to Applied Force and Substrate Structure , 2013, PloS one.

[20]  M. V. van Hoek Biofilms , 2013, Virulence.

[21]  D. Ren,et al.  Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[22]  Mitsuo Umezu,et al.  Analysis of the contraction of fibroblast-collagen gels and the traction force of individual cells by a novel elementary structural model , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[23]  K. Billiar,et al.  Nonlinear strain stiffening is not sufficient to explain how far cells can feel on fibrous protein gels. , 2013, Biophysical journal.

[24]  R. T. Hart,et al.  Fibers in the extracellular matrix enable long-range stress transmission between cells. , 2013, Biophysical journal.

[25]  Ronn S. Friedlander,et al.  Bacterial flagella explore microscale hummocks and hollows to increase adhesion , 2013, Proceedings of the National Academy of Sciences.

[26]  Adrien Ducret,et al.  Wet-surface–enhanced ellipsometric contrast microscopy identifies slime as a major adhesion factor during bacterial surface motility , 2012, Proceedings of the National Academy of Sciences.

[27]  A M Hodge,et al.  Elastic and viscoelastic characterization of agar. , 2012, Journal of the mechanical behavior of biomedical materials.

[28]  B. Maier,et al.  Three-dimensional obstacles for bacterial surface motility. , 2012, Small.

[29]  D. Kaiser,et al.  A cascade of coregulating enhancer binding proteins initiates and propagates a multicellular developmental program , 2011, Proceedings of the National Academy of Sciences.

[30]  D. Ren,et al.  Microtopographic patterns affect Escherichia coli biofilm formation on poly(dimethylsiloxane) surfaces. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[31]  Bassam A. Annous,et al.  Biofilms in the food and beverage industries , 2009 .

[32]  Paul A. Janmey,et al.  Non-Linear Elasticity of Extracellular Matrices Enables Contractile Cells to Communicate Local Position and Orientation , 2009, PloS one.

[33]  H. Vlamakis,et al.  Paracrine signaling in a bacterium. , 2009, Genes & development.

[34]  D. Kaiser Are There Lateral as Well as Polar Engines for A-Motile Gliding in Myxobacteria? , 2009, Journal of bacteriology.

[35]  Paul Stoodley,et al.  Evolving concepts in biofilm infections , 2009, Cellular microbiology.

[36]  P. C. dos Santos Claro,et al.  Submicron trenches reduce the Pseudomonas fluorescens colonization rate on solid surfaces. , 2009, ACS applied materials & interfaces.

[37]  Micah Dembo,et al.  Cell-cell mechanical communication through compliant substrates. , 2008, Biophysical journal.

[38]  Gerard C L Wong,et al.  Elasticity-mediated nematiclike bacterial organization in model extracellular DNA matrix. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  F. Grinnell,et al.  Collagen fibril flow and tissue translocation coupled to fibroblast migration in 3D collagen matrices. , 2008, Molecular biology of the cell.

[40]  R. Salvarezza,et al.  Nano/microscale order affects the early stages of biofilm formation on metal surfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[41]  Dale Kaiser,et al.  Gliding motility and polarized slime secretion , 2007, Molecular microbiology.

[42]  U. Jenal,et al.  Mechanisms of cyclic-di-GMP signaling in bacteria. , 2006, Annual review of genetics.

[43]  B. Bassler,et al.  Quorum sensing: cell-to-cell communication in bacteria. , 2005, Annual review of cell and developmental biology.

[44]  E. Hoiczyk,et al.  How Myxobacteria Glide , 2002, Current Biology.

[45]  Vanessa Sperandio,et al.  Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two‐component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli , 2002, Molecular microbiology.

[46]  中山 二郎,et al.  米国微生物学会コンファレンス"Cell-Cell Communication in Bacteria" に出席して , 2001 .

[47]  M. McBride,et al.  Cloning and Characterization of theFlavobacterium johnsoniae Gliding-Motility GenesgldB and gldC , 2000, Journal of bacteriology.

[48]  D. Kaiser,et al.  Myxococcus cells respond to elastic forces in their substrate. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Wolfgang Baumeister,et al.  The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in cyanobacteria , 1998, Current Biology.

[50]  S. Agarwal,et al.  Cloning and characterization of the Flavobacterium johnsoniae (Cytophaga johnsonae) gliding motility gene, gldA. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Pate Jl Gliding motility in Cytophaga. , 1985 .

[52]  Y. Wang,et al.  Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling , 1985, The Journal of cell biology.

[53]  M. Dworkin Tactic behavior of Myxococcus xanthus , 1983, Journal of bacteriology.

[54]  R P Burchard,et al.  Trail following by gliding bacteria , 1982, Journal of bacteriology.

[55]  W. T. Chen Mechanism of retraction of the trailing edge during fibroblast movement , 1981, The Journal of cell biology.

[56]  Albert K. Harris,et al.  Fibroblast traction as a mechanism for collagen morphogenesis , 1981, Nature.

[57]  A. S. Breathnach,et al.  Cell Adhesion and Motility , 1980 .

[58]  S. Arnott,et al.  The agarose double helix and its function in agarose gel structure. , 1974, Journal of molecular biology.

[59]  S. Arnott,et al.  Iota-carrageenan: molecular structure and packing of polysaccharide double helices in oriented fibres of divalent cation salts. , 1974, Journal of molecular biology.

[60]  R. Stanier A Note on Elasticotaxis in Myxobacteria , 1942, Journal of bacteriology.

[61]  Roberto Kolter,et al.  Biofilms: the matrix revisited. , 2005, Trends in microbiology.

[62]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[63]  J. Pate Gliding motility in Cytophaga. , 1985, Microbiological sciences.

[64]  A. Curtis,et al.  Cell Adhesion and Motility , 1981 .