Exact Constraint Satisfaction for Truly Seamless Parametrization

In the field of global surface parametrization a recent focus has been on so‐called seamless parametrization. This term refers to parametrization approaches which, while using an atlas of charts to enable the handling of surfaces of arbitrary topology, relate the parametrization across the cuts between charts via transition functions from special classes of transformations. This effectively makes the cuts invisible to applications which are invariant to these specific transformations in some sense. In actual implementations of these parametrization approaches, however, these restrictions are obeyed only approximately; errors stem from the tolerances of numerical solvers employed and, ultimately, from the limited accuracy of floating point arithmetic. In practice, robustness issues arise from these flaws in the seamlessness of a parametrization, no matter how small. We present a robust global algorithm that turns a given approximately seamless parametrization into an exactly seamless one ‐ that still is representable by standard floating point numbers. It supports common practically relevant additional constraints regarding boundary and feature curve alignment or isocurve connectivity, and ensures that these are likewise fulfilled exactly. This allows subsequent algorithms to operate robustly on the resulting truly seamless parametrization. We believe that the core of our method will furthermore be of benefit in a broader range of applications involving linearly constrained numerical optimization.

[1]  Yaron Lipman,et al.  Orbifold Tutte embeddings , 2015, ACM Trans. Graph..

[2]  Pierre Alliez,et al.  Designing quadrangulations with discrete harmonic forms , 2006, SGP '06.

[3]  Craig Gotsman,et al.  Conformal Flattening by Curvature Prescription and Metric Scaling , 2008, Comput. Graph. Forum.

[4]  Konrad Polthier,et al.  Perfect Matching Quad Layouts for Manifold Meshes , 2015, SGP '15.

[5]  Evelyne Contejean,et al.  An Efficient Incremental Algorithm for Solving Systems of Linear Diophantine Equations , 1994, Inf. Comput..

[6]  Marcel Campen,et al.  Quad Layout Embedding via Aligned Parameterization , 2014, Comput. Graph. Forum.

[7]  Roi Poranne,et al.  Seamless surface mappings , 2015, ACM Trans. Graph..

[8]  Konrad Polthier,et al.  CUBECOVER – Parameterization of 3D Volumes , 2011 .

[9]  Bernd Gärtner,et al.  An efficient, exact, and generic quadratic programming solver for geometric optimization , 2000, SCG '00.

[10]  N. Mahdavi-Amiri,et al.  ON SOLVING LINEAR DIOPHANTINE SYSTEMS USING GENERALIZED ROSSER'S ALGORITHM , 2011 .

[11]  David Bommes,et al.  Level-of-detail quad meshing , 2014, ACM Trans. Graph..

[12]  Keenan Crane,et al.  Stripe patterns on surfaces , 2015, ACM Trans. Graph..

[13]  Felix Lazebnik,et al.  On Systems of Linear Diophantine Equations , 1996 .

[14]  Sylvain Lefebvre,et al.  Invisible Seams , 2010, Comput. Graph. Forum.

[15]  Jonathan Richard Shewchuk,et al.  Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates , 1997, Discret. Comput. Geom..

[16]  David Bommes,et al.  QEx: robust quad mesh extraction , 2013, ACM Trans. Graph..

[17]  David Dureisseix,et al.  Generalized fraction-free LU factorization for singular systems with kernel extraction , 2012 .

[18]  Daniel E. Steffy,et al.  Iterative Refinement for Linear Programming , 2016, INFORMS J. Comput..

[19]  D. Zorin,et al.  Feature-aligned T-meshes , 2010, ACM Trans. Graph..

[20]  Ofir Weber,et al.  Harmonic global parametrization with rational holonomy , 2017, ACM Trans. Graph..

[21]  Yahia Lebbah,et al.  Solving Constraints over Floating-Point Numbers , 2001, CP.

[22]  Marcel Campen,et al.  Similarity maps and field-guided T-splines , 2017, ACM Trans. Graph..

[23]  K. Polthier,et al.  CubeCover– Parameterization of 3D Volumes , 2011, Comput. Graph. Forum.

[24]  David Bommes,et al.  Global Structure Optimization of Quadrilateral Meshes , 2011, Comput. Graph. Forum.

[25]  Marcel Campen,et al.  Scale‐Invariant Directional Alignment of Surface Parametrizations , 2016, Comput. Graph. Forum.

[26]  Arjen K. Lenstra,et al.  Solving a System of Linear Diophantine Equations with Lower and Upper Bounds on the Variables , 2000, Math. Oper. Res..

[27]  Yaron Lipman,et al.  Bounded distortion mapping spaces for triangular meshes , 2012, ACM Trans. Graph..

[28]  Peter R. Turner A Simplified Fraction-Free Integer Gauss Elimination Algorithm. , 1995 .

[29]  Denis Zorin,et al.  Robust field-aligned global parametrization , 2014, ACM Trans. Graph..

[30]  Konrad Polthier,et al.  QuadCover ‐ Surface Parameterization using Branched Coverings , 2007, Comput. Graph. Forum.

[31]  Denis Zorin,et al.  Controlled-distortion constrained global parametrization , 2013, ACM Trans. Graph..

[32]  Peter Schröder,et al.  Conformal equivalence of triangle meshes , 2008, ACM Trans. Graph..

[33]  Pierre Alliez,et al.  Integer-grid maps for reliable quad meshing , 2013, ACM Trans. Graph..

[34]  Dani Lischinski,et al.  Bounded-distortion piecewise mesh parameterization , 2002, IEEE Visualization, 2002. VIS 2002..

[35]  Bernd Gärtner,et al.  Exact arithmetic at low cost—a case study in linear programming , 1999, SODA '98.

[36]  Eugene Zhang,et al.  Hexagonal Global Parameterization of Arbitrary Surfaces , 2010, IEEE Transactions on Visualization and Computer Graphics.

[37]  David Bommes,et al.  Quantized global parametrization , 2015, ACM Trans. Graph..

[38]  Denis Zorin,et al.  Global parametrization by incremental flattening , 2012, ACM Trans. Graph..