Bayesian multi-tensor factorization

We introduce Bayesian multi-tensor factorization, a model that is the first Bayesian formulation for joint factorization of multiple matrices and tensors. The research problem generalizes the joint matrix–tensor factorization problem to arbitrary sets of tensors of any depth, including matrices, can be interpreted as unsupervised multi-view learning from multiple data tensors, and can be generalized to relax the usual trilinear tensor factorization assumptions. The result is a factorization of the set of tensors into factors shared by any subsets of the tensors, and factors private to individual tensors. We demonstrate the performance against existing baselines in multiple tensor factorization tasks in structural toxicogenomics and functional neuroimaging.

[1]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[2]  S. Taulu,et al.  Suppression of Interference and Artifacts by the Signal Space Separation Method , 2003, Brain Topography.

[3]  Nikos D. Sidiropoulos,et al.  Turbo-SMT: Accelerating Coupled Sparse Matrix-Tensor Factorizations by 200x , 2014, SDM.

[4]  Neal Rosen,et al.  Crystal Structure of an Hsp90–Geldanamycin Complex: Targeting of a Protein Chaperone by an Antitumor Agent , 1997, Cell.

[5]  Paul A Clemons,et al.  The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease , 2006, Science.

[6]  Rasmus Bro,et al.  Multiway analysis of epilepsy tensors , 2007, ISMB/ECCB.

[7]  Henk A. L. Kiers,et al.  Hierarchical relations among three-way methods , 1991 .

[8]  J COLSKY,et al.  Response of patients with leukemia to 8-azaguanine. , 1955, Blood.

[9]  Rasmus Bro,et al.  Structure-revealing data fusion , 2014, BMC Bioinformatics.

[10]  R. Shoemaker The NCI60 human tumour cell line anticancer drug screen , 2006, Nature Reviews Cancer.

[11]  Ali Taylan Cemgil,et al.  Link prediction in heterogeneous data via generalized coupled tensor factorization , 2013, Data Mining and Knowledge Discovery.

[12]  Thomas Hartung,et al.  Food for Thought … Systems Toxicology , 2012 .

[13]  Mika Seppä,et al.  Uncovering cortical MEG responses to listened audiobook stories , 2014, NeuroImage.

[14]  Andrzej Cichocki,et al.  Multiway array decomposition analysis of EEGs in Alzheimer's disease , 2012, Journal of Neuroscience Methods.

[15]  Hisashi Kashima,et al.  Tensor factorization using auxiliary information , 2011, Data Mining and Knowledge Discovery.

[16]  Xing Xie,et al.  Towards mobile intelligence: Learning from GPS history data for collaborative recommendation , 2012, Artif. Intell..

[17]  Ali Taylan Cemgil,et al.  Generalised Coupled Tensor Factorisation , 2011, NIPS.

[18]  Krister Wennerberg,et al.  Identification of structural features in chemicals associated with cancer drug response: a systematic data-driven analysis , 2013, Bioinform..

[19]  T. J. Mitchell,et al.  Bayesian Variable Selection in Linear Regression , 1988 .

[20]  Guillaume Bouchard,et al.  Group-sparse Embeddings in Collective Matrix Factorization , 2013, ICLR.

[21]  Samuel Kaski,et al.  Bayesian Group Factor Analysis , 2012, AISTATS.

[22]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[23]  Lieven De Lathauwer,et al.  Coupled Canonical Polyadic Decompositions and (Coupled) Decompositions in Multilinear Rank-(Lr, n, Lr, n, 1) Terms - Part I: Uniqueness , 2015, SIAM J. Matrix Anal. Appl..

[24]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[25]  Samuel Kaski,et al.  Bayesian Multi-view Tensor Factorization , 2014, ECML/PKDD.

[26]  R. Harshman,et al.  PARAFAC: parallel factor analysis , 1994 .

[27]  Christos Faloutsos,et al.  FlexiFaCT: Scalable Flexible Factorization of Coupled Tensors on Hadoop , 2014, SDM.

[28]  John Shawe-Taylor,et al.  Canonical Correlation Analysis: An Overview with Application to Learning Methods , 2004, Neural Computation.

[29]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[30]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[31]  Peter C. Hansen,et al.  MEG. An introduction to methods , 2010 .

[32]  Lieven De Lathauwer,et al.  Structured Data Fusion , 2015, IEEE Journal of Selected Topics in Signal Processing.

[33]  Rasmus Bro,et al.  Structure-revealing data fusion model with applications in metabolomics , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[34]  Samuel Kaski,et al.  Group Factor Analysis , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[35]  Lieven De Lathauwer,et al.  Coupled Canonical Polyadic Decompositions and (Coupled) Decompositions in Multilinear Rank- (Lr, n, Lr, n, 1) Terms - Part II: Algorithms , 2015, SIAM J. Matrix Anal. Appl..

[36]  R. Cattell “Parallel proportional profiles” and other principles for determining the choice of factors by rotation , 1944 .

[37]  H. Hotelling Relations Between Two Sets of Variates , 1936 .

[38]  Age K. Smilde,et al.  Multiway multiblock component and covariates regression models , 2000 .

[39]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[40]  Tamara G. Kolda,et al.  All-at-once Optimization for Coupled Matrix and Tensor Factorizations , 2011, ArXiv.

[41]  Michael I. Jordan,et al.  A Probabilistic Interpretation of Canonical Correlation Analysis , 2005 .

[42]  Samuel Kaski,et al.  Bayesian Canonical correlation analysis , 2013, J. Mach. Learn. Res..

[43]  G A Noskin,et al.  Salvage therapy with clindamycin/primaquine for Pneumocystis carinii pneumonia. , 1992, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[44]  Rasmus Bro,et al.  Understanding data fusion within the framework of coupled matrix and tensor factorizations , 2013 .

[45]  Koh Takeuchi,et al.  Non-negative Multiple Tensor Factorization , 2013, 2013 IEEE 13th International Conference on Data Mining.

[46]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[47]  R. Tagliaferri,et al.  Discovery of drug mode of action and drug repositioning from transcriptional responses , 2010, Proceedings of the National Academy of Sciences.

[48]  L. Fritz,et al.  A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors , 2003, Nature.