Quantum computers and quantum computations

This review outlines the principles of operation of quantum computers and their elements. The theory of ideal computers that do not interact with the environment and are immune to quantum decohering processes is presented. Decohering processes in quantum computers are investigated. The review considers methods for correcting quantum computing errors arising from the decoherence of the state of the quantum computer, as well as possible methods for the suppression of the decohering processes. A brief enumeration of proposed quantum computer realizations concludes the review.

[1]  E. A. Cornell,et al.  Boze-einshteinovskaya kondensatsiya v razrezhennom gaze. Pervye 70 let i neskol'ko poslednikh eksperimentov , 2003 .

[2]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[3]  Y. Makhlin,et al.  Quantum-state engineering with Josephson-junction devices , 2000, cond-mat/0011269.

[4]  Gerard J. Milburn,et al.  Practical scheme for error control using feedback , 2004 .

[5]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[6]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[7]  Klaas Bergmann,et al.  LASER-DRIVEN POPULATION TRANSFER IN FOUR-LEVEL ATOMS : CONSEQUENCES OF NON-ABELIAN GEOMETRICAL ADIABATIC PHASE FACTORS , 1999 .

[8]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[9]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[10]  C. Macchiavello,et al.  AGAINST QUANTUM NOISE , 1999, quant-ph/9904070.

[11]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.

[12]  W. Ketterle,et al.  Kogda atomy vedut sebya kak volny. Boze-einshteinovskaya kondensatsiya i atomnyi lazer , 2003 .

[13]  R. Feynman Simulating physics with computers , 1999 .

[14]  P. Zoller,et al.  A scalable quantum computer with ions in an array of microtraps , 2000, Nature.

[15]  A. Lupascu,et al.  Nondestructive readout for a superconducting flux qubit. , 2004, Physical review letters.

[16]  Daniel A. Lidar,et al.  Combined error correction techniques for quantum computing architectures , 2002, quant-ph/0210072.

[17]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[18]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[19]  K B Whaley,et al.  Coherence-preserving quantum bits. , 2001, Physical review letters.

[20]  C. Wieman,et al.  Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments , 2002 .

[21]  P. Facchi,et al.  Control of decoherence: Dynamical decoupling versus quantum Zeno effect: A case study for trapped ions , 2002, quant-ph/0210129.

[22]  W. Ketterle Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser* , 2002 .

[23]  Dietrich Leibfried,et al.  LASER ADDRESSING OF INDIVIDUAL IONS IN A LINEAR ION TRAP , 1999 .

[24]  H J Mamin,et al.  Detection and manipulation of statistical polarization in small spin ensembles. , 2003, Physical review letters.

[25]  Michael Thorwart,et al.  Decoherence and dissipation during a quantum XOR gate operation , 2001 .

[26]  M. Freedman,et al.  Topological Quantum Computation , 2001, quant-ph/0101025.

[27]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[28]  P. Joyez,et al.  Manipulating the Quantum State of an Electrical Circuit , 2002, Science.

[29]  Michel H. Devoret,et al.  Amplifying quantum signals with the single-electron transistor , 2000, Nature.

[30]  G. J. Milburn,et al.  Quantum error correction for continuously detected errors , 2003 .

[31]  Abrams,et al.  Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit , 1999, Physical review letters.

[32]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[33]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[34]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[35]  Jonathan P. Dowling,et al.  CORRELATED INPUT-PORT, MATTER-WAVE INTERFEROMETER : QUANTUM-NOISE LIMITS TO THE ATOM-LASER GYROSCOPE , 1998 .

[36]  David E. Pritchard,et al.  Atom cooling , trapping , and quantum manipulation , 1999 .

[37]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[38]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[39]  M. B. Plenio The physics of information , 2001 .

[40]  D. Abrams,et al.  Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.

[41]  GianCarlo Ghirardi,et al.  General criterion for the entanglement of two indistinguishable particles (10 pages) , 2004 .

[42]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[43]  Artur Ekert,et al.  Quantum computers and dissipation , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[44]  Seth Lloyd,et al.  Superconducting persistent-current qubit , 1999, cond-mat/9908283.

[45]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[46]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[47]  G. J. Milburn,et al.  Single Spin Measurement using Single Electron Transistors to Probe Two Electron Systems , 2000 .

[48]  Vaidman,et al.  Error prevention scheme with four particles. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[49]  P. Facchi,et al.  From the quantum zeno to the inverse quantum zeno effect. , 2000, Physical review letters.

[50]  D. Lidar,et al.  Unification of dynamical decoupling and the quantum Zeno effect (6 pages) , 2003, quant-ph/0303132.

[51]  Andrew J. Landahl,et al.  Continuous quantum error correction via quantum feedback control , 2002 .