Conformal Symmetries of Spherical Spacetimes

We investigate the conformal geometry of spherically symmetric spacetimes in general without specifying the form of the matter distribution. The general conformal Killing symmetry is obtained subject to a number of integrability conditions. Previous results relating to static spacetimes are shown to be a special case of our solution. The general inheriting conformal symmetry vector, which maps fluid flow lines conformally onto fluid flow lines, is generated and the integrability conditions are shown to be satisfied. We show that there exists a hypersurface orthogonal conformal Killing vector in an exact solution of Einstein’s equations for a relativistic fluid which is expanding, accelerating and shearing.

[1]  B. Tupper,et al.  Conformal symmetry classes for pp-wave spacetimes , 2004, 1308.1683.

[2]  P. Negi,et al.  Exact Solutions of Einstein's Field Equations , 2004, gr-qc/0401024.

[3]  T. Harko,et al.  Full causal dissipative cosmologies with stiff matter , 2003, gr-qc/0311050.

[4]  G. Hall,et al.  Conformal symmetry inheritance in null fluid spacetimes , 2003 .

[5]  N. Dadhich,et al.  Inheriting geodesic flows , 2001 .

[6]  R. Barrett,et al.  The conformal group SO(4,2) and Robertson-Walker spacetimes , 1999, gr-qc/9907002.

[7]  K. Lake,et al.  Physical acceptability of isolated, static, spherically symmetric, perfect fluid solutions of Einstein's equations , 1998, gr-qc/9809013.

[8]  R. Maartens,et al.  Conformal motions in static spherical spacetimes , 1996 .

[9]  R. Maartens,et al.  Conformal symmetries in static spherically symmetric spacetimes , 1995 .

[10]  R. Maartens,et al.  General solution and classification of conformal motions in static spherical spacetimes , 1995 .

[11]  A. Coley,et al.  Spherically symmetric anisotropic fluid ICKV spacetimes , 1994 .

[12]  S. Maharaj,et al.  A conformal vector in shearing space-times , 1994 .

[13]  A. Coley,et al.  Spherically symmetric spacetimes admitting inheriting conformal Killing vector fields , 1990 .

[14]  A. Coley,et al.  Spacetimes admitting inheriting conformal Killing vector fields , 1990 .

[15]  R. Maartens,et al.  Conformally symmetric static fluid spheres , 1990 .

[16]  R. Tello-Llanos Curvature and conformal collineations in presence of matter , 1988 .

[17]  R. Maartens,et al.  Kinematic and dynamic properties of conformal Killing vectors in anisotropic fluids , 1986 .

[18]  L. Herrera,et al.  Isotropic and anisotropic charged spheres admitting a one-parameter group of conformal motions , 1985 .

[19]  L. Herrera,et al.  Anisotropic fluids and conformal motions in general relativity , 1984 .