Clinical, genetic, and functional characterization of the glycine receptor β-subunit A455P variant in a family affected by hyperekplexia syndrome

[1]  C. Sommer,et al.  Novel Functional Properties of Missense Mutations in the Glycine Receptor β Subunit in Startle Disease , 2021, Frontiers in Molecular Neuroscience.

[2]  E. Gouaux,et al.  Architecture and assembly mechanism of native glycine receptors , 2021, Nature.

[3]  X. Bai,et al.  Characterization of the subunit composition and structure of adult human glycine receptors , 2021, Neuron.

[4]  J. Rosenfeld,et al.  Bi-allelic variants in HOPS complex subunit VPS41 cause cerebellar ataxia and abnormal membrane trafficking , 2021, Brain : a journal of neurology.

[5]  S. Tabrizi,et al.  A new family with GLRB-related hyperekplexia showing chorea in homo- and heterozygous variant carriers. , 2020, Parkinsonism & related disorders.

[6]  L. Sivilotti,et al.  The startle disease mutation α1S270T predicts shortening of glycinergic synaptic currents , 2020, The Journal of physiology.

[7]  Nancy T. Malintan,et al.  Genetic and phenotypic characterization of NKX6‐2‐related spastic ataxia and hypomyelination , 2019, European journal of neurology.

[8]  Lilia M. Iakoucheva,et al.  Pathogenicity and functional impact of non-frameshifting insertion/deletion variation in the human genome , 2019, PLoS Comput. Biol..

[9]  Gregory M. Cooper,et al.  CADD: predicting the deleteriousness of variants throughout the human genome , 2018, Nucleic Acids Res..

[10]  H. Schindelin,et al.  Structure–Function Relationships of Glycine and GABAA Receptors and Their Interplay With the Scaffolding Protein Gephyrin , 2018, Front. Mol. Neurosci..

[11]  Natascha Schaefer,et al.  Impaired Glycine Receptor Trafficking in Neurological Diseases , 2018, Front. Mol. Neurosci..

[12]  Hiromi Hirata,et al.  Functional Consequences of the Postnatal Switch From Neonatal to Mutant Adult Glycine Receptor α1 Subunits in the Shaky Mouse Model of Startle Disease , 2018, Front. Mol. Neurosci..

[13]  Paul D. Thomas,et al.  PANTHER-PSEP: predicting disease-causing genetic variants using position-specific evolutionary preservation , 2016, Bioinform..

[14]  Wei Li,et al.  RaptorX-Property: a web server for protein structure property prediction , 2016, Nucleic Acids Res..

[15]  Jana Marie Schwarz,et al.  MutationTaster2: mutation prediction for the deep-sequencing age , 2014, Nature Methods.

[16]  A. Bode,et al.  The impact of human hyperekplexia mutations on glycine receptor structure and function , 2014, Molecular Brain.

[17]  E. Karam,et al.  New Hyperekplexia Mutations Provide Insight into Glycine Receptor Assembly, Trafficking, and Activation Mechanisms* , 2013, The Journal of Biological Chemistry.

[18]  F. Alkuraya Impact of new genomic tools on the practice of clinical genetics in consanguineous populations: the Saudi experience , 2013, Clinical genetics.

[19]  F. Alkuraya The application of next-generation sequencing in the autozygosity mapping of human recessive diseases , 2013, Human Genetics.

[20]  D. Rusakov,et al.  Sub-millisecond ligand probing of cell receptors with multiple solution exchange , 2013, Nature Protocols.

[21]  M. Topf,et al.  Novel missense mutations in the glycine receptor β subunit gene (GLRB) in startle disease , 2013, Neurobiology of Disease.

[22]  B. Weschke,et al.  GLRB is the third major gene of effect in hyperekplexia. , 2013, Human molecular genetics.

[23]  Munhyang Lee,et al.  Clinical Features and Genetic Analysis of Children With Hyperekplexia in Korea , 2013, Journal of child neurology.

[24]  M. Topf,et al.  Mutations in the GlyT2 Gene (SLC6A5) Are a Second Major Cause of Startle Disease* , 2012, The Journal of Biological Chemistry.

[25]  Jing Hu,et al.  SIFT web server: predicting effects of amino acid substitutions on proteins , 2012, Nucleic Acids Res..

[26]  N. Kaya,et al.  Novel mutation in GLRB in a large family with hereditary hyperekplexia , 2012, Clinical genetics.

[27]  D. Colquhoun,et al.  The α1K276E Startle Disease Mutation Reveals Multiple Intermediate States in the Gating of Glycine Receptors , 2012, The Journal of Neuroscience.

[28]  J. Lynch,et al.  β Subunit M2–M3 Loop Conformational Changes Are Uncoupled from α1 β Glycine Receptor Channel Gating: Implications for Human Hereditary Hyperekplexia , 2011, PloS one.

[29]  Jana Marie Schwarz,et al.  MutationTaster evaluates disease-causing potential of sequence alterations , 2010, Nature Methods.

[30]  F. Andermann,et al.  Pathophysiological Mechanisms of Dominant and Recessive GLRA1 Mutations in Hyperekplexia , 2010, The Journal of Neuroscience.

[31]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[32]  M. Topf,et al.  The genetics of hyperekplexia: more than startle! , 2008, Trends in genetics : TIG.

[33]  C. Sander,et al.  Determinants of protein function revealed by combinatorial entropy optimization , 2007, Genome Biology.

[34]  Heinrich Betz,et al.  The β Subunit Determines the Ligand Binding Properties of Synaptic Glycine Receptors , 2005, Neuron.

[35]  J. Lynch,et al.  Molecular structure and function of the glycine receptor chloride channel. , 2004, Physiological reviews.

[36]  D. Kullmann,et al.  Functional characterization of compound heterozygosity for GlyRα1 mutations in the startle disease hyperekplexia , 2002, The European journal of neuroscience.

[37]  M. Owen,et al.  Hyperekplexia associated with compound heterozygote mutations in the beta-subunit of the human inhibitory glycine receptor (GLRB). , 2002, Human molecular genetics.

[38]  A. Triller,et al.  Fast and reversible trapping of surface glycine receptors by gephyrin , 2001, Nature Neuroscience.

[39]  T. Lewis,et al.  Properties of human glycine receptors containing the hyperekplexia mutation α1(K276E), expressed in Xenopus oocytes , 1998, The Journal of physiology.

[40]  F. Elmslie,et al.  Analysis of GLRA1 in hereditary and sporadic hyperekplexia: a novel mutation in a family cosegregating for hyperekplexia and spastic paraparesis. , 1996, Journal of medical genetics.

[41]  P. O’Connell,et al.  Mutational analysis of familial and sporadic hyperekplexia , 1995, Annals of neurology.

[42]  P. O'Connell,et al.  Mutations in the α1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia , 1993, Nature Genetics.

[43]  H. Betz,et al.  Assembly of the inhibitory glycine receptor: Identification of amino acid sequence motifs governing subunit stoichiometry , 1993, Neuron.

[44]  J. Bormann,et al.  The atypical M2 segment of the beta subunit confers picrotoxinin resistance to inhibitory glycine receptor channels. , 1992, The EMBO journal.

[45]  D. Langosch,et al.  Conserved quaternary structure of ligand-gated ion channels: the postsynaptic glycine receptor is a pentamer. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[46]  M. Owen,et al.  Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease , 2006, Nature Genetics.

[47]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..