An adaptive ghost fluid finite volume method for compressible gas-water simulations

An adaptive ghost fluid finite volume method is developed for one- and two-dimensional compressible multi-medium flows in this work. It couples the real ghost fluid method (GFM) [C.W. Wang, T.G. Liu, B.C. Khoo, A real-ghost fluid method for the simulation of multi-medium compressible flow, SIAM J. Sci. Comput. 28 (2006) 278-302] and the adaptive moving mesh method [H.Z. Tang, T. Tang. Moving mesh methods for one- and two-dimensional hyperbolic conservation laws, SIAM J. Numer. Anal. 41 (2003) 487-515; H.Z. Tang, T. Tang, P.W. Zhang, An adaptive mesh redistribution method for non-linear Hamilton-Jacobi equations in two- and three-dimensions, J. Comput. Phys. 188 (2003) 543-572], and thus combines their advantages. This work shows that the local mesh clustering in the vicinity of the material interface can effectively reduce both numerical and conservative errors caused by the GFM around the material interface and other discontinuities. Besides the improvement of flow field resolution, the adaptive GFM also largely increases the computational efficiency. Several numerical experiments are conducted to demonstrate robustness and efficiency of the current method. They include several 1D and 2D gas-water flow problems, involving a large density gradient at the material interface and strong shock-interface interactions. The results show that our algorithm can capture the shock waves and the material interface accurately, and is stable and robust even for solutions with large density and pressure gradients.

[1]  M. Arienti,et al.  A level set approach to Eulerian-Lagrangian coupling , 2003 .

[2]  Barry Koren,et al.  Riemann-problem and level-set approaches for homentropic two-fluid flow computations , 2002 .

[3]  Barry Koren,et al.  A pressure-invariant conservative Godunov-type method for barotropic two-fluid flows , 2003 .

[4]  Weizhang Huang,et al.  Metric tensors for anisotropic mesh generation , 2005 .

[5]  R. Fedkiw,et al.  A numerical method for two-phase flow consisting of separate compressible and incompressible regions , 2000 .

[6]  Smadar Karni,et al.  Hybrid Multifluid Algorithms , 1996, SIAM J. Sci. Comput..

[7]  R. Fedkiw,et al.  A Boundary Condition Capturing Method for Poisson's Equation on Irregular Domains , 2000 .

[8]  A. Dvinsky Adaptive grid generation from harmonic maps on Reimannian manifolds , 1991 .

[9]  Pingwen Zhang,et al.  An adaptive mesh redistribution method for nonlinear Hamilton--Jacobi equations in two-and three-dimensions , 2003 .

[10]  Ning Zhao,et al.  Conservative front tracking and level set algorithms , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[12]  Gordon Erlebacher,et al.  High-order ENO schemes applied to two- and three-dimensional compressible flow , 1992 .

[13]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[14]  Tiegang Liu,et al.  Runge-Kutta discontinuous Galerkin methods for compressible two-medium flow simulations: One-dimensional case , 2007, J. Comput. Phys..

[15]  Ruo Li,et al.  Moving Mesh Finite Element Methods for the Incompressible Navier-Stokes Equations , 2005, SIAM J. Sci. Comput..

[16]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[17]  A. M. Winslow Numerical Solution of the Quasilinear Poisson Equation in a Nonuniform Triangle Mesh , 1997 .

[18]  Frank Losasso,et al.  Simulating water and smoke with an octree data structure , 2004, SIGGRAPH 2004.

[19]  Boo Cheong Khoo,et al.  Ghost fluid method for strong shock impacting on material interface , 2003 .

[20]  Pingwen Zhang,et al.  A Moving Mesh Finite Element Algorithm for Singular Problems in Two and Three Space Dimensions , 2002 .

[21]  Ignacio Llamas,et al.  Advections with Significantly Reduced Dissipation and Diffusion , 2007, IEEE Transactions on Visualization and Computer Graphics.

[22]  Tao Tang,et al.  Adaptive Mesh Methods for One- and Two-Dimensional Hyperbolic Conservation Laws , 2003, SIAM J. Numer. Anal..

[23]  Theo G. Theofanous,et al.  Adaptive characteristics-based matching for compressible multifluid dynamics , 2006, J. Comput. Phys..

[24]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[25]  Theo G. Theofanous,et al.  Direct Numerical Simulation of Interfacial Flows: Implicit Sharp-Interface Method (I-SIM) , 2008 .

[26]  James A. Sethian,et al.  The Fast Construction of Extension Velocities in Level Set Methods , 1999 .

[27]  Eric Johnsen,et al.  Implementation of WENO schemes in compressible multicomponent flow problems , 2005, J. Comput. Phys..

[28]  Weiqing Ren,et al.  An Iterative Grid Redistribution Method for Singular Problems in Multiple Dimensions , 2000 .

[29]  B. Larrouturou How to preserve the mass fractions positivity when computing compressible multi-component flows , 1991 .

[30]  R. Fedkiw,et al.  Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method , 2002 .

[31]  Pingwen Zhang,et al.  Moving mesh methods in multiple dimensions based on harmonic maps , 2001 .

[32]  Boo Cheong Khoo,et al.  The simulation of compressible multi-medium flow: II. Applications to 2D underwater shock refraction , 2001 .

[33]  Tiegang Liu,et al.  The simulation of cavitating flows induced by underwater shock and free surface interaction , 2007 .

[34]  Boo Cheong Khoo,et al.  The ghost fluid method for compressible gas-water simulation , 2005 .

[35]  Rémi Abgrall,et al.  Computations of compressible multifluids , 2001 .

[36]  R. Abgrall How to Prevent Pressure Oscillations in Multicomponent Flow Calculations , 1996 .

[37]  Weizhang Huang Mathematical Principles of Anisotropic Mesh Adaptation , 2006 .

[38]  J. Flaherty,et al.  An Adaptive Finite Element Method for Initial-Boundary Value Problems for Partial Differential Equations , 1982 .

[39]  Ronald Fedkiw,et al.  Regular Article: The Ghost Fluid Method for Deflagration and Detonation Discontinuities , 1999 .

[40]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[41]  Michael Aivazis,et al.  A virtual test facility for simulating the dynamic response of materials , 2000, Comput. Sci. Eng..

[42]  Andrew B. Wardlaw,et al.  Fluid-structure interaction mechanisms for close-in explosions , 2000 .

[43]  Yunqing Huang,et al.  Moving mesh methods with locally varying time steps , 2004 .

[44]  Boo Cheong Khoo,et al.  A Real Ghost Fluid Method for the Simulation of Multimedium Compressible Flow , 2006, SIAM J. Sci. Comput..

[45]  Thomas Y. Hou,et al.  An efficient dynamically adaptive mesh for potentially singular solutions , 2001 .

[46]  Robert D. Russell,et al.  Anr-Adaptive Finite Element Method Based upon Moving Mesh PDEs , 1999 .

[47]  Timothy G. Leighton,et al.  Shock-induced collapse of a cylindrical air cavity in water: a Free-Lagrange simulation , 2000 .

[48]  Khoon Seng Yeo,et al.  The simulation of compressible multi-medium flow. I. A new methodology with test applications to 1D gas–gas and gas–water cases , 2001 .

[49]  Weizhang Huang,et al.  Moving Mesh Methods Based on Moving Mesh Partial Differential Equations , 1994 .

[50]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[51]  Keith Miller,et al.  Moving Finite Elements. I , 1981 .

[52]  J. Brackbill An adaptive grid with directional control , 1993 .

[53]  Smadar Karni,et al.  Multicomponent Flow Calculations by a Consistent Primitive Algorithm , 1994 .

[54]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[55]  J. Sethian,et al.  Crystal growth and dendritic solidification , 1992 .