Bosonization study of quantum phase transitions in the one-dimensional asymmetric Hubbard model

The quantum phase transitions in the one-dimensional asymmetric Hubbard model are investigated with the bosonization approach. The conditions for the phase transition from density wave to phase separation, the correlation functions, and their exponents are obtained analytically. Our results show that the difference between the hopping integrals for up- and down-spin electrons is crucial for the occurrence of the phase separation. When the difference is large enough, the phase separation will appear even if the on-site interaction is small.

[1]  Hai-Qing Lin,et al.  Block-block entanglement and quantum phase transitions in the one-dimensional extended Hubbard model , 2005, quant-ph/0511103.

[2]  M. Cazalilla,et al.  Two-component Fermi gas on internal-state-dependent optical lattices. , 2005, Physical review letters.

[3]  D. Ueltschi Segregation in the Asymmetric Hubbard Model , 2003, math-ph/0311049.

[4]  Hai-Qing Lin,et al.  Entanglement and quantum phase transition in the extended Hubbard model. , 2003, Physical review letters.

[5]  J. Freericks,et al.  Exact dynamical mean-field theory of the Falicov-Kimball model , 2003 .

[6]  D. Cabra,et al.  Instabilities in Luttinger liquids , 2002, cond-mat/0205098.

[7]  A. M. Souza,et al.  Crossing points in specific-heat curves of the asymmetric Hubbard model , 2002 .

[8]  E. Lieb,et al.  Phase separation due to quantum mechanical correlations. , 2001, Physical review letters.

[9]  N. Macris,et al.  Phase separation and the segregation principle in the infinite-U spinless Falicov-Kimball model , 1999, cond-mat/9901289.

[10]  G. Fáth,et al.  LETTER TO THE EDITOR: The asymmetric Hubbard model on a two-dimensional cluster , 1996 .

[11]  Shelton,et al.  Antiferromagnetic spin ladders: Crossover between spin S=1/2 and S=1 chains. , 1995, Physical review. B, Condensed matter.

[12]  Fáth,et al.  Asymmetric Hubbard chain at half-filling. , 1995, Physical review. B, Condensed matter.

[13]  Johannes Voit,et al.  One-dimensional Fermi liquids , 1995, cond-mat/9510014.

[14]  Vladimir E. Korepin,et al.  The One-Dimensional Hubbard Model , 1994 .

[15]  F. Mila,et al.  Phase diagram of the one-dimensional extended Hubbard model with attractive and/or repulsive interactions at quarter filling. , 1993, Physical review. B, Condensed matter.

[16]  Freericks Spinless Falicov-Kimball model (annealed binary alloy) from large to small dimensions. , 1993, Physical review. B, Condensed matter.

[17]  Penc,et al.  One-dimensional Hubbard model in a magnetic field and the multicomponent Tomonaga-Luttinger model. , 1993, Physical review. B, Condensed matter.

[18]  P. Lemberger Segregation in the Falicov-Kimball model , 1992 .

[19]  J. Voit,et al.  Phase diagram and correlation functions of the half-filled extended Hubbard model in one dimension. , 1992, Physical review. B, Condensed matter.

[20]  U. Brandt Phase separation in the spinless Falicov-Kimball model , 1991 .

[21]  Ogata,et al.  Phase diagram of the one-dimensional t-J model. , 1991, Physical review letters.

[22]  Frahm,et al.  Correlation functions of the one-dimensional Hubbard model in a magnetic field. , 1991, Physical review. B, Condensed matter.

[23]  Frahm,et al.  Critical exponents for the one-dimensional Hubbard model. , 1990, Physical review. B, Condensed matter.

[24]  M. Parrinello,et al.  Non–Fermi-Liquid Exponents of the One-Dimensional Hubbard Model , 1990 .

[25]  Schulz Correlation exponents and the metal-insulator transition in the one-dimensional Hubbard model. , 1990, Physical review letters.

[26]  Sorella,et al.  Asymptotic spin-spin correlations of the U--> , 1990, Physical review letters.

[27]  Ogata,et al.  Bethe-ansatz wave function, momentum distribution, and spin correlation in the one-dimensional strongly correlated Hubbard model. , 1990, Physical review. B, Condensed matter.

[28]  Falicov,et al.  Two-state one-dimensional spinless Fermi gas. , 1990, Physical review. B, Condensed matter.

[29]  V. J. Emery,et al.  Phase separation in the t-J model. , 1990, Physical review letters.

[30]  Timonen,et al.  Spin-1 Heisenberg chain and the one-dimensional fermion gas. , 1989, Physical review. B, Condensed matter.

[31]  Carmelo,et al.  Solution of the one-dimensional Hubbard model for arbitrary electron density and large U. , 1988, Physical review. B, Condensed matter.

[32]  E. Lieb,et al.  An itinerant electron model with crystalline or magnetic long range order , 1986 .

[33]  U. Brandt,et al.  Exact results for the distribution of thef-level ground state occupation in the spinless Falicov-Kimball model , 1986 .

[34]  F. Haldane,et al.  Effective Harmonic-Fluid Approach to Low-Energy Properties of One-Dimensional Quantum Fluids , 1981 .

[35]  F. Haldane,et al.  Luttinger liquid theory of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas , 1981 .

[36]  F. Haldane General Relation of Correlation Exponents and Spectral Properties of One-Dimensional Fermi Systems: Application to the Anisotropic S=12 Heisenberg Chain , 1980 .

[37]  S. Coleman Quantum sine-Gordon equation as the massive Thirring model , 1975 .

[38]  L. Falicov,et al.  Metal-Insulator Transitions: A Simple Theoretical Model , 1970 .

[39]  J. C. Kimball,et al.  Simple Model for Semiconductor-Metal Transitions: SmB6and Transition-Metal Oxides , 1969 .

[40]  Elliott H. Lieb,et al.  Absence of Mott Transition in an Exact Solution of the Short-Range, One-Band Model in One Dimension , 1968 .

[41]  J. M. Luttinger An Exactly Soluble Model of a Many‐Fermion System , 1963 .

[42]  S. Tomonaga Remarks on Bloch's Method of Sound Waves applied to Many-Fermion Problems , 1950 .