Lecture notes on gradient flows and optimal transport

We present a short overview on the strongest variational formulation for gradient flows of geodesically $\lambda$-convex functionals in metric spaces, with applications to diffusion equations in Wasserstein spaces of probability measures. These notes are based on a series of lectures given by the second author for the Summer School "Optimal transportation: Theory and applications" in Grenoble during the week of June 22-26, 2009.

[1]  L. C. Evans,et al.  Diffeomorphisms and Nonlinear Heat Flows , 2005, SIAM Journal on Mathematical Analysis.

[2]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[3]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[4]  Haim Brezis,et al.  Monotonicity Methods in Hilbert Spaces and Some Applications to Nonlinear Partial Differential Equations , 1971 .

[5]  Giuseppe Savaré,et al.  Abstract evolution equations on variable domains : an approach by minimizing movements , 1996 .

[6]  Anna Nagurney,et al.  Variational Inequalities , 2009, Encyclopedia of Optimization.

[7]  Viorel Barbu,et al.  Differential equations in Banach spaces , 1976 .

[8]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[9]  J. Carrillo,et al.  Contractivity of Wasserstein metrics and asymptotic profiles for scalar conservation laws , 2006 .

[10]  Error Estimates for Dissipative Evolution Problems , 2003 .

[11]  D. Burago,et al.  A Course in Metric Geometry , 2001 .

[12]  M. Agueh Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. , 2002, math/0309410.

[13]  Mario Tosques,et al.  Curves of maximal slope and parabolic variational inequalities on non-convex constraints , 1989 .

[14]  E. D. Giorgi,et al.  New problems on minimizing movements tt , 2016 .

[15]  Giuseppe Savare',et al.  A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations † , 2000 .

[16]  Marco Degiovanni,et al.  Evolution equations with lack of convexity , 1985 .

[17]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[18]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[19]  Y. Kōmura,et al.  Nonlinear semi-groups in Hilbert space , 1967 .

[20]  Claudio Baiocchi,et al.  Discretization of Evolution Variational Inequalities , 1989 .

[21]  R. McCann,et al.  A Family of Nonlinear Fourth Order Equations of Gradient Flow Type , 2009, 0901.0540.

[22]  Morteza Zadimoghaddam,et al.  Minimizing movement , 2007, SODA '07.

[23]  C. Villani,et al.  Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media , 2006 .

[24]  C. Villani,et al.  Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.

[25]  W. Gangbo,et al.  Constrained steepest descent in the 2-Wasserstein metric , 2003, math/0312063.

[26]  José A. Carrillo,et al.  Convergence of the Mass-Transport Steepest Descent Scheme for the Subcritical Patlak-Keller-Segel Model , 2008, SIAM J. Numer. Anal..

[27]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces. II , 2006 .

[28]  C. Villani,et al.  Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates , 2003 .

[29]  Shin-ichi Ohta,et al.  Gradient flows on Wasserstein spaces over compact Alexandrov spaces , 2009 .

[30]  Karl-Theodor Sturm,et al.  Transport inequalities, gradient estimates, entropy and Ricci curvature , 2005 .

[31]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[32]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[33]  E. D. Giorgi,et al.  Evolution equations for a class of non­linear operators , 1983 .

[34]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[35]  A. Mielke,et al.  A Variational Formulation of¶Rate-Independent Phase Transformations¶Using an Extremum Principle , 2002 .

[36]  Michael G. Crandall,et al.  GENERATION OF SEMI-GROUPS OF NONLINEAR TRANSFORMATIONS ON GENERAL BANACH SPACES, , 1971 .

[37]  Wilfrid Gangbo,et al.  Solution of a Model Boltzmann Equation via Steepest Descent in the 2-Wasserstein Metric , 2004 .

[38]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[39]  Giuseppe Savaré,et al.  Contraction of general transportation costs along solutions to Fokker–Planck equations with monotone drifts , 2010, 1002.0088.

[40]  Karl-Theodor Sturm,et al.  Convex functionals of probability measures and nonlinear diffusions on manifolds , 2005 .

[41]  C. Villani The founding fathers of optimal transport , 2009 .

[42]  WEAK SOLUTIONS AND MAXIMAL REGULARITY FOR , 2006 .

[43]  Stephan Luckhaus,et al.  Solutions for the Two-Phase Stefan Problem with the Gibbs—Thomson Law for the Melting Temperature , 1990 .

[44]  Jürgen Jost,et al.  Nonpositive Curvature: Geometric And Analytic Aspects , 1997 .

[45]  L. Ambrosio,et al.  Chapter 1 – Gradient Flows of Probability Measures , 2007 .

[46]  L. Ambrosio,et al.  A gradient flow approach to an evolution problem arising in superconductivity , 2008 .

[47]  Giuseppe Savaré,et al.  A Wasserstein Approach to the One-Dimensional Sticky Particle System , 2009, SIAM J. Math. Anal..

[48]  Uwe F. Mayer,et al.  Gradient flows on nonpositively curved metric spaces and harmonic maps , 1998 .

[49]  Introduction to Gradient Flows in Metric Spaces (II) , 2010 .

[50]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[51]  J. Rulla,et al.  Error analysis for implicit approximations to solutions to Cauchy problems , 1996 .

[52]  Amnon Pazy,et al.  Semi-groups of nonlinear contractions and dissipative sets☆ , 1969 .

[53]  L. Ambrosio,et al.  Existence and stability for Fokker–Planck equations with log-concave reference measure , 2007, Probability Theory and Related Fields.

[54]  C. Villani,et al.  Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .

[55]  G. Colombo,et al.  On a class of evolution equations without convexity , 1997 .

[56]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces , 2006 .

[57]  Sara Daneri,et al.  Eulerian Calculus for the Displacement Convexity in the Wasserstein Distance , 2008, SIAM J. Math. Anal..

[58]  Felix Otto,et al.  Eulerian Calculus for the Contraction in the Wasserstein Distance , 2005, SIAM J. Math. Anal..

[59]  Jinghai Shao,et al.  Wasserstein space over the Wiener space , 2010 .

[60]  M. Knott,et al.  On the optimal mapping of distributions , 1984 .

[61]  Giuseppe Savaré Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds , 2007 .

[62]  C. Villani Topics in Optimal Transportation , 2003 .

[63]  Matthias Erbar The heat equation on manifolds as a gradient flow in the Wasserstein space , 2010 .

[64]  Jos'e Antonio Carrillo,et al.  Nonlinear mobility continuity equations and generalized displacement convexity , 2009, 0901.3978.