Lecture notes on gradient flows and optimal transport
暂无分享,去创建一个
[1] L. C. Evans,et al. Diffeomorphisms and Nonlinear Heat Flows , 2005, SIAM Journal on Mathematical Analysis.
[2] H. Brezis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .
[3] F. Otto. THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .
[4] Haim Brezis,et al. Monotonicity Methods in Hilbert Spaces and Some Applications to Nonlinear Partial Differential Equations , 1971 .
[5] Giuseppe Savaré,et al. Abstract evolution equations on variable domains : an approach by minimizing movements , 1996 .
[6] Anna Nagurney,et al. Variational Inequalities , 2009, Encyclopedia of Optimization.
[7] Viorel Barbu,et al. Differential equations in Banach spaces , 1976 .
[8] G. D. Maso,et al. An Introduction to-convergence , 1993 .
[9] J. Carrillo,et al. Contractivity of Wasserstein metrics and asymptotic profiles for scalar conservation laws , 2006 .
[10] Error Estimates for Dissipative Evolution Problems , 2003 .
[11] D. Burago,et al. A Course in Metric Geometry , 2001 .
[12] M. Agueh. Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. , 2002, math/0309410.
[13] Mario Tosques,et al. Curves of maximal slope and parabolic variational inequalities on non-convex constraints , 1989 .
[14] E. D. Giorgi,et al. New problems on minimizing movements tt , 2016 .
[15] Giuseppe Savare',et al. A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations † , 2000 .
[16] Marco Degiovanni,et al. Evolution equations with lack of convexity , 1985 .
[17] D. Kinderlehrer,et al. THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .
[18] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[19] Y. Kōmura,et al. Nonlinear semi-groups in Hilbert space , 1967 .
[20] Claudio Baiocchi,et al. Discretization of Evolution Variational Inequalities , 1989 .
[21] R. McCann,et al. A Family of Nonlinear Fourth Order Equations of Gradient Flow Type , 2009, 0901.0540.
[22] Morteza Zadimoghaddam,et al. Minimizing movement , 2007, SODA '07.
[23] C. Villani,et al. Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media , 2006 .
[24] C. Villani,et al. Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.
[25] W. Gangbo,et al. Constrained steepest descent in the 2-Wasserstein metric , 2003, math/0312063.
[26] José A. Carrillo,et al. Convergence of the Mass-Transport Steepest Descent Scheme for the Subcritical Patlak-Keller-Segel Model , 2008, SIAM J. Numer. Anal..
[27] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces. II , 2006 .
[28] C. Villani,et al. Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates , 2003 .
[29] Shin-ichi Ohta,et al. Gradient flows on Wasserstein spaces over compact Alexandrov spaces , 2009 .
[30] Karl-Theodor Sturm,et al. Transport inequalities, gradient estimates, entropy and Ricci curvature , 2005 .
[31] G. Burton. TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .
[32] R. McCann. A Convexity Principle for Interacting Gases , 1997 .
[33] E. D. Giorgi,et al. Evolution equations for a class of nonlinear operators , 1983 .
[34] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[35] A. Mielke,et al. A Variational Formulation of¶Rate-Independent Phase Transformations¶Using an Extremum Principle , 2002 .
[36] Michael G. Crandall,et al. GENERATION OF SEMI-GROUPS OF NONLINEAR TRANSFORMATIONS ON GENERAL BANACH SPACES, , 1971 .
[37] Wilfrid Gangbo,et al. Solution of a Model Boltzmann Equation via Steepest Descent in the 2-Wasserstein Metric , 2004 .
[38] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[39] Giuseppe Savaré,et al. Contraction of general transportation costs along solutions to Fokker–Planck equations with monotone drifts , 2010, 1002.0088.
[40] Karl-Theodor Sturm,et al. Convex functionals of probability measures and nonlinear diffusions on manifolds , 2005 .
[41] C. Villani. The founding fathers of optimal transport , 2009 .
[42] WEAK SOLUTIONS AND MAXIMAL REGULARITY FOR , 2006 .
[43] Stephan Luckhaus,et al. Solutions for the Two-Phase Stefan Problem with the Gibbs—Thomson Law for the Melting Temperature , 1990 .
[44] Jürgen Jost,et al. Nonpositive Curvature: Geometric And Analytic Aspects , 1997 .
[45] L. Ambrosio,et al. Chapter 1 – Gradient Flows of Probability Measures , 2007 .
[46] L. Ambrosio,et al. A gradient flow approach to an evolution problem arising in superconductivity , 2008 .
[47] Giuseppe Savaré,et al. A Wasserstein Approach to the One-Dimensional Sticky Particle System , 2009, SIAM J. Math. Anal..
[48] Uwe F. Mayer,et al. Gradient flows on nonpositively curved metric spaces and harmonic maps , 1998 .
[49] Introduction to Gradient Flows in Metric Spaces (II) , 2010 .
[50] Yann Brenier,et al. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.
[51] J. Rulla,et al. Error analysis for implicit approximations to solutions to Cauchy problems , 1996 .
[52] Amnon Pazy,et al. Semi-groups of nonlinear contractions and dissipative sets☆ , 1969 .
[53] L. Ambrosio,et al. Existence and stability for Fokker–Planck equations with log-concave reference measure , 2007, Probability Theory and Related Fields.
[54] C. Villani,et al. Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .
[55] G. Colombo,et al. On a class of evolution equations without convexity , 1997 .
[56] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces , 2006 .
[57] Sara Daneri,et al. Eulerian Calculus for the Displacement Convexity in the Wasserstein Distance , 2008, SIAM J. Math. Anal..
[58] Felix Otto,et al. Eulerian Calculus for the Contraction in the Wasserstein Distance , 2005, SIAM J. Math. Anal..
[59] Jinghai Shao,et al. Wasserstein space over the Wiener space , 2010 .
[60] M. Knott,et al. On the optimal mapping of distributions , 1984 .
[61] Giuseppe Savaré. Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds , 2007 .
[62] C. Villani. Topics in Optimal Transportation , 2003 .
[63] Matthias Erbar. The heat equation on manifolds as a gradient flow in the Wasserstein space , 2010 .
[64] Jos'e Antonio Carrillo,et al. Nonlinear mobility continuity equations and generalized displacement convexity , 2009, 0901.3978.