Nanoscale Fabry-Perot interferometer using channel plasmon-polaritons in triangular metallic grooves

In this letter, we demonstrate the possibility of an effective nanoscale Fabry–Perot interferometer in a subwavelength plasmonic waveguide in the form of a triangular groove on a metal surface, guiding channel plasmon-polaritons. The resonant cavity is formed by two semitransparent metal membranes (mirrors) placed into the groove. Effective filtering effect of the cavity is demonstrated, resulting in single-mode output from the cavity. Typical quality factor for the cavity of the resonant length is determined to be Q∼100 for the silver-vacuum structure with the 30° groove angle. Possible ways of increasing this factor are discussed.

[1]  A. Morimoto,et al.  Guiding of a one-dimensional optical beam with nanometer diameter. , 1997, Optics letters.

[2]  D. Pile,et al.  Channel plasmon-polariton in a triangular groove on a metal surface. , 2004, Optics letters.

[3]  Harald Ditlbacher,et al.  Plasmon dispersion relation of Au and Ag nanowires , 2003 .

[4]  Bernhard Lamprecht,et al.  Surface plasmon propagation in microscale metal stripes , 2001 .

[5]  Douglas A. Christensen,et al.  Modeling SPR sensors with the finite-difference time-domain method , 1996 .

[6]  Eric Bourillot,et al.  Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles , 1999 .

[7]  P. Berini Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures , 2000 .

[8]  Harry A. Atwater,et al.  Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices , 2001 .

[9]  P. Berini,et al.  Experimental observation of plasmon polariton waves supported by a thin metal film of finite width. , 2000, Optics letters.

[10]  D. Gramotnev,et al.  New plasmonic sub-wavelength waveguides: next to zero losses at sharp bends , 2004 .

[11]  J. Krenn,et al.  Watching energy transfer , 2003, Nature materials.

[12]  Masahiro Tanaka,et al.  Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide , 2003 .

[13]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[14]  Bernhard Lamprecht,et al.  Non?diffraction-limited light transport by gold nanowires , 2002 .

[15]  D. Pile,et al.  Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface , 2004 .

[16]  Sergey I. Bozhevolnyi,et al.  Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths , 2003 .

[17]  K. Nishio,et al.  Propagation of surface plasmon polariton in nanometre‐sized metal‐clad optical waveguides , 2003, Journal of microscopy.

[18]  Yeshaiahu Fainman,et al.  Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides. , 2004, Optics express.