Metaheuristics in Stochastic Combinatorial Optimization: a Survey

Metaheuristics such as Ant Colony Optimization, Evolutionary Computation, Simulated Annealing, Tabu Search and Stochastic Partitioning Methods are introduced, and their recent applications to a wide class of combinatorial optimization problems under uncertainty are reviewed. The flexibility of metaheuristics in being adapted to different modeling approaches and problem formulations emerges clearly. This paper provides also a description and classification of the modeling approaches of optimization under uncertainty. Moreover, a formal description of the main formulations corresponding to more classical domains in the literature is provided. In this survey, the reader familiar to metaheuristics finds also pointers to classical algorithmic approaches to optimization under uncertainty, while the reader new to metaheuristics should find a good tutorial in those metaheuristics that are being applied to optimization under un-

[1]  S. Andradóttir,et al.  A Simulated Annealing Algorithm with Constant Temperature for Discrete Stochastic Optimization , 1999 .

[2]  Luca Maria Gambardella,et al.  Solving symmetric and asymmetric TSPs by ant colonies , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[3]  Alain Hertz,et al.  A Taxonomy of Evolutionary Algorithms in Combinatorial Optimization , 1999, J. Heuristics.

[4]  Allan Borodin,et al.  Online computation and competitive analysis , 1998 .

[5]  Minghe Sun,et al.  Determining buffer location and size in production lines using tabu search , 1998, Eur. J. Oper. Res..

[6]  Peter Stagge,et al.  Averaging Efficiently in the Presence of Noise , 1998, PPSN.

[7]  Gilbert Laporte,et al.  An Exact Algorithm for the Vehicle Routing Problem with Stochastic Demands and Customers , 1995, Transp. Sci..

[8]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[9]  H. Beyer Evolutionary algorithms in noisy environments : theoretical issues and guidelines for practice , 2000 .

[10]  H. Chang,et al.  An ant system approach to Markov decision processes , 2004, Proceedings of the 2004 American Control Conference.

[11]  Susanne Albers,et al.  Online algorithms: a survey , 2003, Math. Program..

[12]  Chandrasekharan Rajendran,et al.  A simulation-based genetic algorithm for inventory optimization in a serial supply chain , 2005, Int. Trans. Oper. Res..

[13]  Kamlesh Mathur,et al.  Stochastic Vehicle Routing Problem with Restocking , 2000, Transp. Sci..

[14]  Günter Rudolph,et al.  Convergence of evolutionary algorithms in general search spaces , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[15]  Andrew G. Barto,et al.  Reinforcement learning , 1998 .

[16]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[17]  Tito Homem-de-Mello,et al.  Variable-sample methods for stochastic optimization , 2003, TOMC.

[18]  A. S. Kenyon,et al.  A survey on stochastic location and routing problems , 2001 .

[19]  Tito Homem-de-Mello Variable-sample methods and simulated annealing for discrete stochastic optimization , 2000 .

[20]  W. Gutjahr S-ACO: An Ant-Based Approach to Combinatorial Optimization Under Uncertainty , 2004, ANTS Workshop.

[21]  Walter J. Gutjahr,et al.  A Converging ACO Algorithm for Stochastic Combinatorial Optimization , 2003, SAGA.

[22]  Benjamin W. Wah,et al.  Scheduling of Genetic Algorithms in a Noisy Environment , 1994, Evolutionary Computation.

[23]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[24]  G. Grimmett,et al.  Probability and random processes , 2002 .

[25]  Luca Maria Gambardella,et al.  An Ant Colony Optimization Approach to the Probabilistic Traveling Salesman Problem , 2002, PPSN.

[26]  Leyuan Shi,et al.  Nested Partitions Method for Global Optimization , 2000, Oper. Res..

[27]  Enver Yücesan,et al.  Discrete-event simulation optimization using ranking, selection, and multiple comparison procedures: A survey , 2003, TOMC.

[28]  Talal M. Alkhamis,et al.  Simulation-based optimization using simulated annealing with confidence interval , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..

[29]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[30]  S. Brailsford,et al.  Optimal screening policies for diabetic retinopathy using a combined discrete-event simulation and ant colony optimization approach , 2005 .

[31]  M. J. Fryer,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[32]  Larry W. Jacobs,et al.  A simulated annealing approach to the cyclic staff-scheduling problem , 1993 .

[33]  Ann Melissa Campbell,et al.  Extension of the 2-p-opt and 1-shift algorithms to the heterogeneous probabilistic traveling salesman problem , 2007, Eur. J. Oper. Res..

[34]  Barry L. Nelson,et al.  A combined procedure for optimization via simulation , 2002, Proceedings of the Winter Simulation Conference.

[35]  Mauro Birattari,et al.  Hybrid Metaheuristics for the Vehicle Routing Problem with Stochastic Demands , 2005, J. Math. Model. Algorithms.

[36]  Georg Ch. Pflug,et al.  Simulated Annealing for noisy cost functions , 1996, J. Glob. Optim..

[37]  David L. Woodruff,et al.  Progressive hedging and tabu search applied to mixed integer (0,1) multistage stochastic programming , 1996, J. Heuristics.

[38]  Donald F. Rossin,et al.  A Stochastic Goal Program for Employee Scheduling , 1996 .

[39]  Georg Ch. Pflug,et al.  Optimal stochastic single-machine-tardiness scheduling by stochastic branch-and-bound , 1999, Eur. J. Oper. Res..

[40]  Michael C. Fu,et al.  Evolutionary policy iteration for solving Markov decision processes , 2005, IEEE Transactions on Automatic Control.

[41]  David E. Goldberg,et al.  Genetic Algorithms, Selection Schemes, and the Varying Effects of Noise , 1996, Evolutionary Computation.

[42]  Daniel A. Finke,et al.  Shop scheduling using Tabu search and simulation , 2002, Proceedings of the Winter Simulation Conference.

[43]  Sandy Irani,et al.  On-Line Algorithms for the Dynamic Traveling Repair Problem , 2002, SODA '02.

[44]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[45]  Sigrún Andradóttir,et al.  A review of simulation optimization techniques , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[46]  Catherine M. Harmonosky,et al.  An improved simulated annealing simulation optimization method for discrete parameter stochastic systems , 2005, Comput. Oper. Res..

[47]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[48]  Richard Bellman,et al.  Decision-making in fuzzy environment , 2012 .

[49]  J. -F. M. Barthelemy,et al.  Approximation concepts for optimum structural design — a review , 1993 .

[50]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[51]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[52]  Eric Châtelet,et al.  Monte Carlo simulation and genetic algorithm for optimising supply chain management in a stochastic environment , 2001, 2001 IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.No.01CH37236).

[53]  Sanjoy Mitter,et al.  Analysis of simulated annealing for optimization , 1985, 1985 24th IEEE Conference on Decision and Control.

[54]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[55]  Jürgen Branke,et al.  New Ideas for Applying Ant Colony Optimization to the Probabilistic TSP , 2003, EvoWorkshops.

[56]  Peter Kall,et al.  Stochastic Programming , 1995 .

[57]  Bruce E. Hajek,et al.  Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..

[58]  Jürgen Branke,et al.  Solving the Probabilistic TSP with Ant Colony Optimization , 2004, J. Math. Model. Algorithms.

[59]  R. Tyrrell Rockafellar,et al.  Scenarios and Policy Aggregation in Optimization Under Uncertainty , 1991, Math. Oper. Res..

[60]  Barry L. Nelson,et al.  Selection-of-the-best procedures for optimization via simulation , 2001, Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304).

[61]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[62]  T. Back,et al.  Thresholding-a selection operator for noisy ES , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[63]  Leonardo Vanneschi,et al.  Limiting the Number of Fitness Cases in Genetic Programming Using Statistics , 2002, PPSN.

[64]  John N. Tsitsiklis,et al.  Rollout Algorithms for Combinatorial Optimization , 1997, J. Heuristics.

[65]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[66]  Nicola Secomandi,et al.  Comparing neuro-dynamic programming algorithms for the vehicle routing problem with stochastic demands , 2000, Comput. Oper. Res..

[67]  Larry W. Jacobs,et al.  A Simulated Annealing Approach to the Solution of Flexible Labour Scheduling Problems , 1993 .

[68]  Andrzej Ruszczynski,et al.  On Optimal Allocation of Indivisibles Under Uncertainty , 1998, Oper. Res..

[69]  Chelsea C. White,et al.  A Hybrid Genetic/Optimization Algorithm for Finite-Horizon, Partially Observed Markov Decision Processes , 2004, INFORMS J. Comput..

[70]  E. Silver,et al.  Some insights regarding selecting sets of scenarios in combinatorial stochastic problems , 1996 .

[71]  Joshua D. Knowles,et al.  Local search for the probabilistic traveling salesman problem: Correction to the 2-p-opt and 1-shift algorithms , 2005, Eur. J. Oper. Res..

[72]  Sandor Markon,et al.  Threshold selection, hypothesis tests, and DOE methods , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[73]  Patrizia Beraldi,et al.  Beam search heuristic to solve stochastic integer problems under probabilistic constraints , 2005, Eur. J. Oper. Res..

[74]  Richard S. Sutton,et al.  Reinforcement Learning , 1992, Handbook of Machine Learning.

[75]  T. Fink,et al.  Characterization of the probabilistic traveling salesman problem. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  R. H. Smith Optimization for Simulation : Theory vs . Practice , 2002 .

[77]  David L. Woodruff,et al.  Progressive hedging as a meta-heuristic applied to stochastic lot-sizing , 2001, Eur. J. Oper. Res..

[78]  Jean-Paul Watson,et al.  The impact of approximate evaluation on the performance of search algorithms for warehouse scheduling , 1999 .

[79]  Abraham P. Punnen,et al.  The traveling salesman problem and its variations , 2007 .

[80]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[81]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[82]  Dimitri P. Bertsekas,et al.  Network optimization : continuous and discrete models , 1998 .

[83]  I. Sabuncuoglu,et al.  Stochastic assembly line balancing using beam search , 2005 .

[84]  Alain Hertz,et al.  A framework for the description of evolutionary algorithms , 2000, Eur. J. Oper. Res..

[85]  Nashat Mansour,et al.  A distributed genetic algorithm for deterministic and stochastic labor scheduling problems , 1999, Eur. J. Oper. Res..

[86]  Michael D. Vose,et al.  The simple genetic algorithm - foundations and theory , 1999, Complex adaptive systems.

[87]  Georg Ch. Pflug,et al.  A branch and bound method for stochastic global optimization , 1998, Math. Program..

[88]  Jürgen Branke,et al.  Selection in the Presence of Noise , 2003, GECCO.

[89]  M.C. Fu,et al.  Simulation optimization , 2001, Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304).

[90]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[91]  S. Mitter,et al.  Simulated annealing with noisy or imprecise energy measurements , 1989 .

[92]  Hyeong Soo Chang An ant system based exploration-exploitation for reinforcement learning , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[93]  Saïd Hanafi,et al.  On the Convergence of Tabu Search , 2001, J. Heuristics.

[94]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[95]  Erick Cantú-Paz,et al.  Adaptive Sampling for Noisy Problems , 2004, GECCO.

[96]  Dušan Teodorović,et al.  A simulated annealing technique approach to the vehicle routing problem in the case of stochastic demand , 1992 .

[97]  K.L. Mak,et al.  A genetic algorithm for vehicle routing problems with stochastic demand and soft time windows , 2004, Proceedings of the 2004 IEEE Systems and Information Engineering Design Symposium, 2004..

[98]  L. Goddard,et al.  Operations Research (OR) , 2007 .

[99]  Dimitri P. Bertsekas,et al.  Rollout Algorithms for Stochastic Scheduling Problems , 1999, J. Heuristics.

[100]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[101]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[102]  Michel Gendreau,et al.  A Tabu Search Heuristic for the Vehicle Routing Problem with Stochastic Demands and Customers , 1996, Oper. Res..

[103]  M. Dorigo,et al.  ACO/F-Race: Ant Colony Optimization and Racing Techniques for Combinatorial Optimization Under Uncertainty , 2005 .

[104]  Martin E. Dyer,et al.  Computational complexity of stochastic programming problems , 2006, Math. Program..

[105]  Michel Gendreau,et al.  METAHEURISTICS FOR THE VEHICLE ROUTING PROBLEM. , 1994 .

[106]  Talal M. Alkhamis,et al.  Simulated annealing for discrete optimization with estimation , 1999, Eur. J. Oper. Res..

[107]  Edward A. Silver,et al.  Tabu Search When Noise is Present: An Illustration in the Context of Cause and Effect Analysis , 1998, J. Heuristics.

[108]  Roberto Aringhieri,et al.  Solving Chance-Constrained Programs Combining Tabu Search and Simulation , 2004, WEA.

[109]  Z. Birnbaum On Random Variables with Comparable Peakedness , 1948 .

[110]  W. K. Klein Haneveld,et al.  Stochastic integer programming: state of the art , 1998 .

[111]  Astro Teller,et al.  Automatically Choosing the Number of Fitness Cases: The Rational Allocation of Trials , 1997 .

[112]  B. Fox,et al.  Probabilistic Search with Overrides , 1995 .

[113]  Nicola Secomandi,et al.  Analysis of a Rollout Approach to Sequencing Problems with Stochastic Routing Applications , 2003, J. Heuristics.

[114]  Luca Maria Gambardella,et al.  Ant Algorithms for Discrete Optimization , 1999, Artificial Life.

[115]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[116]  Y. Yoshitomi A Genetic Algorithm Approach to Solving Stochastic Job‐shop Scheduling Problems , 2002 .

[117]  Colin R. Reeves,et al.  Genetic Algorithms: Principles and Perspectives: A Guide to Ga Theory , 2002 .

[118]  John N. Tsitsiklis,et al.  Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.

[119]  John N. Tsitsiklis,et al.  Asynchronous stochastic approximation and Q-learning , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[120]  Chun-Hung Chen,et al.  PROCEEDINGS OF THE 2002 WINTER SIMULATION CONFERENCE , 2002 .

[121]  Christine Strauss,et al.  Crashing of stochastic processes by sampling and optimisation , 2000, Bus. Process. Manag. J..

[122]  Akif Asil Bulgak,et al.  Integrating a modified simulated annealing algorithm with the simulation of a manufacturing system to optimize buffer sizes in automatic assembly systems , 1988, WSC '88.

[123]  Jorge Haddock,et al.  Simulation optimization using simulated annealing , 1992 .

[124]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[125]  Cigdem Alabas-Uslu,et al.  Simulation optimization using tabu search , 2000, 2000 Winter Simulation Conference Proceedings (Cat. No.00CH37165).

[126]  Gilbert Laporte,et al.  A Priori Optimization of the Probabilistic Traveling Salesman Problem , 1994, Oper. Res..

[127]  Luca Maria Gambardella,et al.  Solving the Homogeneous Probabilistic Traveling Salesman Problem by the ACO Metaheuristic , 2002, Ant Algorithms.

[128]  Y. Yoshitomi,et al.  A genetic algorithm and the Monte Carlo method for stochastic job‐shop scheduling , 2003 .

[129]  Christine Strauss,et al.  A Stochastic Branch-and-Bound Approach to Activity Crashing in Project Management , 2000, INFORMS J. Comput..

[130]  Gerald Tesauro,et al.  On-line Policy Improvement using Monte-Carlo Search , 1996, NIPS.

[131]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[132]  Nicola Secomandi,et al.  A Rollout Policy for the Vehicle Routing Problem with Stochastic Demands , 2001, Oper. Res..

[133]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[134]  Fred W. Glover,et al.  Tabu search and finite convergence , 2002, Discret. Appl. Math..