Perfect codes in Euclidean lattices
暂无分享,去创建一个
[1] S. Golomb,et al. Perfect Codes in the Lee Metric and the Packing of Polyominoes , 1970 .
[2] N. J. A. Sloane,et al. Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.
[3] Patrick Solé. Counting lattice points in pyramids , 1995, Discret. Math..
[4] J. Lagarias,et al. Integral self-affine tiles in ℝn I. Standard and nonstandard digit sets , 1996 .
[5] J. Lagarias,et al. Integral self-affine tiles in ℝn part II: Lattice tilings , 1997 .
[6] M. Kolountzakis. Lattice-tiling properties of integral self-affine functions , 1997 .
[7] Sueli I. Rodrigues Costa,et al. Graphs, tessellations, and perfect codes on flat tori , 2004, IEEE Transactions on Information Theory.
[8] Eitan Yaakobi,et al. Dense error-correcting codes in the Lee metric , 2010, 2010 IEEE Information Theory Workshop.
[9] Peter Horák,et al. Diameter Perfect Lee Codes , 2012, IEEE Transactions on Information Theory.
[10] Carlos Araujo,et al. Lattice-Like Total Perfect Codes , 2014, Discuss. Math. Graph Theory.
[11] Italo J. Dejter,et al. A generalization of Lee codes , 2014, Des. Codes Cryptogr..
[12] Peter Horák,et al. A new approach towards the Golomb-Welch conjecture , 2014, Eur. J. Comb..
[13] G. C. Jorge,et al. Quasi-perfect codes in the $$\ell _p$$ℓp metric , 2015 .
[14] A. Campello,et al. Perfect codes in the lp metric , 2015, Eur. J. Comb..
[15] Dongryul Kim. Nonexistence of perfect 2-error-correcting Lee codes in certain dimensions , 2017, Eur. J. Comb..
[16] Antonio Campello,et al. Random Ensembles of Lattices From Generalized Reductions , 2017, IEEE Transactions on Information Theory.
[17] Antonio Campello,et al. Non-Existence of Linear Perfect Lee Codes With Radius 2 for Infinitely Many Dimensions , 2018, IEEE Transactions on Information Theory.
[18] Italo J. Dejter,et al. There is but one PDS in \({\mathbb Z}^3\) inducing just square components , 2017, Bull. ICA.
[19] Patrick Solé,et al. Lattice Codes for Deletion and Repetition Channels , 2018, IEEE Transactions on Information Theory.
[20] Sueli I. R. Costa,et al. Perfect Codes in Euclidean Lattices: Bounds and Case Studies , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).