The diversification of Heliconius butterflies: what have we learned in 150 years?

Research into Heliconius butterflies has made a significant contribution to evolutionary biology. Here, we review our understanding of the diversification of these butterflies, covering recent advances and a vast foundation of earlier work. Whereas no single group of organisms can be sufficient for understanding life's diversity, after years of intensive study, research into Heliconius has addressed a wide variety of evolutionary questions. We first discuss evidence for widespread gene flow between Heliconius species and what this reveals about the nature of species. We then address the evolution and diversity of warning patterns, both as the target of selection and with respect to their underlying genetic basis. The identification of major genes involved in mimetic shifts, and homology at these loci between distantly related taxa, has revealed a surprising predictability in the genetic basis of evolution. In the final sections, we consider the evolution of warning patterns, and Heliconius diversity more generally, within a broader context of ecological and sexual selection. We consider how different traits and modes of selection can interact and influence the evolution of reproductive isolation.

[1]  Michael S. Taylor,et al.  Widespread genomic divergence during sympatric speciation , 2010, Proceedings of the National Academy of Sciences.

[2]  James Mallet,et al.  Reproductive isolation caused by colour pattern mimicry , 2001, Nature.

[3]  N. Barton Fitness Landscapes and the Origin of Species , 2004 .

[4]  Patricio A. Salazar,et al.  Disruptive ecological selection on a mating cue , 2012, Proceedings of the Royal Society B: Biological Sciences.

[5]  J. Mallet,et al.  Genetic differentiation without mimicry shift in a pair of hybridizing Heliconius species (Lepidoptera: Nymphalidae) , 2013 .

[6]  R. B. Srygley The aerodynamic costs of warning signals in palatable mimetic butterflies and their distasteful models , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[7]  Durrell D. Kapan,et al.  Linkage of butterfly mate preference and wing color preference cue at the genomic location of wingless. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[8]  P. Nosil,et al.  Ecological explanations for (incomplete) speciation. , 2009, Trends in ecology & evolution.

[9]  L. Gilbert,et al.  Pollen feeding, resource allocation and the evolution of chemical defence in passion vine butterflies , 2013, Journal of evolutionary biology.

[10]  J. Mallet Shift happens! Shifting balance and the evolution of diversity in warning colour and mimicry , 2010 .

[11]  A. McGregor,et al.  Morphological evolution through multiple cis-regulatory mutations at a single gene , 2007, Nature.

[12]  M. Kronforst,et al.  MULTILOCUS ANALYSES OF ADMIXTURE AND INTROGRESSION AMONG HYBRIDIZING HELICONIUS BUTTERFLIES , 2006, Evolution; international journal of organic evolution.

[13]  S. Ott,et al.  Brain composition in Godyris zavaleta, a diurnal butterfly, Reflects an increased reliance on olfactory information , 2014, The Journal of comparative neurology.

[14]  C. Jiggins,et al.  Patterns of pollen feeding and habitat preference among Heliconius species , 2002 .

[15]  A. Phillimore,et al.  Testing historical explanations for gradients in species richness in heliconiine butterflies of tropical America , 2012 .

[16]  James Mallet,et al.  A Conserved Supergene Locus Controls Colour Pattern Diversity in Heliconius Butterflies , 2006, PLoS biology.

[17]  Susan D. Finkbeiner,et al.  Warning signals are seductive: Relative contributions of color and pattern to predator avoidance and mate attraction in Heliconius butterflies , 2014, Evolution; international journal of organic evolution.

[18]  K. C. Spencer,et al.  Chemical Mediation of Coevolution , 1990 .

[19]  J. Crane Spectral reflectance characteristics of butterflies (Lepidoptera) from Trinidad, B.W.I , 1954, Zoologica : scientific contributions of the New York Zoological Society..

[20]  C. Schlichting,et al.  Phenotypic plasticity's impacts on diversification and speciation. , 2010, Trends in ecology & evolution.

[21]  Martin Stevens Sensory Ecology, Behaviour, and Evolution , 2013 .

[22]  A. Whibley,et al.  Evolution of dominance mechanisms at a butterfly mimicry supergene , 2014, Nature Communications.

[23]  G. Moreira,et al.  Absence of Learning and Local Specialization on Host Plant Selection by Heliconius erato , 2005, Journal of Insect Behavior.

[24]  Robert D Reed,et al.  The benefit of being a social butterfly: communal roosting deters predation , 2012, Proceedings of the Royal Society B: Biological Sciences.

[25]  Tahmima Anam A Golden Age , 2007 .

[26]  J. Johnston,et al.  A Genetic Linkage Map of the Mimetic Butterfly Heliconius melpomene , 2005, Genetics.

[27]  N. Barton,et al.  Estimates of selection and gene flow from measures of cline width and linkage disequilibrium in heliconius hybrid zones. , 1990, Genetics.

[28]  Thomas J. Hardcastle,et al.  Evaluating female remating rates in light of spermatophore degradation in Heliconius butterflies: pupal‐mating monandry versus adult‐mating polyandry , 2012 .

[29]  Durrell D. Kapan,et al.  Historical demography of Mullerian mimicry in the neotropical Heliconius butterflies. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[30]  P. Brakefield,et al.  Correlations between scale structure and pigmentation in butterfly wings , 2001, Evolution & development.

[31]  Pall I. Olason,et al.  The genomic landscape of species divergence in Ficedula flycatchers , 2012, Nature.

[32]  Cristina P. Sandoval,et al.  Ecological Niche Dimensionality and the Evolutionary Diversification of Stick Insects , 2008, PloS one.

[33]  A. Wenck,et al.  Positive selection. , 2005, Methods in molecular biology.

[34]  J. Sivinski Mushroom body development in nymphalid butterflies: A correlate of learning? , 1989, Journal of Insect Behavior.

[35]  J. Mallet,et al.  Mimicry and warning colour at the boundary between races and species , 1998 .

[36]  N. Barton,et al.  STRONG NATURAL SELECTION IN A WARNING‐COLOR HYBRID ZONE , 1989, Evolution; international journal of organic evolution.

[37]  Franz J. Weissing,et al.  Adaptive speciation theory: a conceptual review , 2011, Behavioral Ecology and Sociobiology.

[38]  Heiko Vogel,et al.  Characterization of a Hotspot for Mimicry: Assembly of a Butterfly Wing Transcriptome to Genomic Sequence at the Hmyb/sb Locus , 2022 .

[39]  J. Mallet,et al.  What initiates speciation in passion-vine butterflies? , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[40]  E. Mayr Systematics and the Origin of Species , 1942 .

[41]  Wei Zhang,et al.  Hybridization Reveals the Evolving Genomic Architecture of Speciation , 2013, Cell reports.

[42]  L. Gilbert Pollen feeding and reproductive biology of heliconius butterflies. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[43]  S. Yeaman,et al.  Establishment of new mutations under divergence and genome hitchhiking , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[44]  A. Whibley,et al.  Conservatism and novelty in the genetic architecture of adaptation in Heliconius butterflies , 2015, Heredity.

[45]  Daniel Sol,et al.  Brain Size Predicts the Success of Mammal Species Introduced into Novel Environments , 2008, The American Naturalist.

[46]  R. ffrench-Constant,et al.  WING SHAPE VARIATION ASSOCIATED WITH MIMICRY IN BUTTERFLIES , 2013, Evolution; international journal of organic evolution.

[47]  R. B. Srygley,et al.  Evolution of the wave: aerodynamic and aposematic functions of butterfly wing motion , 2007, Proceedings of the Royal Society B: Biological Sciences.

[48]  J. Mallet,et al.  Strikingly variable divergence times inferred across an Amazonian butterfly ‘suture zone’ , 2005, Proceedings of the Royal Society B: Biological Sciences.

[49]  N. Patel,et al.  Multiple recent co-options of Optix associated with novel traits in adaptive butterfly wing radiations , 2014, EvoDevo.

[50]  James Mallet,et al.  EVOLUTION OF DIVERSITY IN WARNING COLOR AND MIMICRY: Polymorphisms, Shifting , 1999 .

[51]  W. Gronenberg,et al.  Brain Size: A Global or Induced Cost of Learning? , 2009, Brain, Behavior and Evolution.

[52]  M. Kronforst,et al.  Ancient homology underlies adaptive mimetic diversity across butterflies , 2014, Nature Communications.

[53]  S. Via Divergence hitchhiking and the spread of genomic isolation during ecological speciation-with-gene-flow , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[54]  M. West-Eberhard Developmental plasticity and evolution , 2003 .

[55]  Y. Iwasa,et al.  The evolution of a Müllerian mimic in a spatially distributed community. , 2005, Journal of theoretical biology.

[56]  R. Dukas Effects of learning on evolution: robustness, innovation and speciation , 2013, Animal Behaviour.

[57]  J. Mallet,et al.  Stable Heliconius butterfly hybrid zones are correlated with a local rainfall peak at the edge of the Amazon basin , 2014, Evolution; international journal of organic evolution.

[58]  M. Linares The Genetics of the Mimetic Coloration in the Butterfly Heliconius cydno weymeri , 1996 .

[59]  C. Knight,et al.  The evolution of seeds. , 2010, The New phytologist.

[60]  Chris D. Jiggins,et al.  Speciation by hybridization in Heliconius butterflies , 2006, Nature.

[61]  T. Sherratt,et al.  The Evolution of Warning Signals as Reliable Indicators of Prey Defense , 2003, The American Naturalist.

[62]  K. Brown Geographical patterns of evolution in Neotropical Lepidoptera. Systematics and derivation of known and new Heliconiini (Nymphalidae: Nymphalinae) , 2009 .

[63]  G. D. Bernard,et al.  Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies , 2010, Proceedings of the National Academy of Sciences.

[64]  S. Farris,et al.  Parasitoidism, not sociality, is associated with the evolution of elaborate mushroom bodies in the brains of hymenopteran insects , 2011, Proceedings of the Royal Society B: Biological Sciences.

[65]  K. C. Spencer,et al.  CHAPTER 7 – Chemical Mediation of Coevolution in the Passiflora–Heliconius Interaction , 1988 .

[66]  M. Egan,et al.  Cladistic analysis of Heliconius butterflies and relatives (Nymphalidae: Heliconiiti): a revised phylogenetic position for Eueides based on sequences from mtDNA and a nuclear gene , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[67]  L. Gilbert,et al.  The Coevolution of a Butterfly and a Vine , 1982 .

[68]  Durrell D. Kapan,et al.  Parallel Genetic Architecture of Parallel Adaptive Radiations in Mimetic Heliconius Butterflies , 2006, Genetics.

[69]  J. Mallet,et al.  Disruptive sexual selection against hybrids contributes to speciation between Heliconius cydno and Heliconius melpomene , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[70]  Chung-I Wu The genic view of the process of speciation , 2001 .

[71]  W. W. Benson Natural Selection for Miillerian Mimicry in Heliconius erato in Costa Rica , 1972, Science.

[72]  C. Peichel,et al.  Parallel evolution of Pitx1 underlies pelvic reduction in Scottish threespine stickleback (Gasterosteus aculeatus). , 2007, The Journal of heredity.

[73]  C. Boggs,et al.  Pollen feeding in the butterfly Heliconius charitonia: isotopic evidence for essential amino acid transfer from pollen to eggs , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[74]  C. Pinheiro Palatablility and escaping ability in Neotropical butterflies: tests with wild kingbirds (Tyrannus melancholicus, Tyrannidae) , 1996 .

[75]  C. Boggs SELECTION PRESSURES AFFECTING MALE NUTRIENT INVESTMENT AT MATING IN HELICONIINE BUTTERFLIES , 1981, Evolution; international journal of organic evolution.

[76]  David L Stern,et al.  Is Genetic Evolution Predictable? , 2009, Science.

[77]  F. C. Kafatos,et al.  Widespread Divergence Between Incipient Anopheles gambiae Species Revealed by Whole Genome Sequences , 2010, Science.

[78]  A. M. Araújo,et al.  Courtship behavior of Heliconius erato phyllis (Lepidoptera, Nymphalidae) towards virgin and mated females: conflict between attraction and repulsion signals? , 2010, Journal of Ethology.

[79]  A. Van Zandt Brower Phylogeny of Heliconius butterflies inferred from mitochondrial DNA sequences (Lepidoptera: Nymphalidae). , 1994, Molecular phylogenetics and evolution.

[80]  R. I. Hill,et al.  Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand , 2012, Proceedings of the National Academy of Sciences.

[81]  G. D. Bernard,et al.  Contrasting modes of evolution of the visual pigments in Heliconius butterflies. , 2010, Molecular biology and evolution.

[82]  Camilo Salazar,et al.  Genomic architecture of adaptive color pattern divergence and convergence in Heliconius butterflies , 2013, Genome research.

[83]  J. Mallet,et al.  Did forest islands drive the diversity of warningly coloured butterflies? Biotic drift and the shifting balance , 1996 .

[84]  B. Nelson,et al.  Endemism centres, refugia and botanical collection density in Brazilian Amazonia , 1990, Nature.

[85]  M. Kronforst,et al.  Reinforcement of mate preference among hybridizing Heliconius butterflies , 2007, Journal of evolutionary biology.

[86]  B. Angers,et al.  Wright's Shifting Balance Theory and the Diversification of Aposematic Signals , 2012, PloS one.

[87]  M. Dalíková,et al.  Linkage map of the peppered moth, Biston betularia (Lepidoptera, Geometridae): a model of industrial melanism , 2012, Heredity.

[88]  Alex A. Pollen,et al.  The genomic basis of adaptive evolution in threespine sticklebacks , 2012, Nature.

[89]  M. Hammer,et al.  Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. , 1998, Learning & memory.

[90]  Simon H. Martin,et al.  Butterfly genome reveals promiscuous exchange of mimicry adaptations among species , 2012, Nature.

[91]  Matthew W. Hahn,et al.  Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow , 2014, Molecular ecology.

[92]  L. Gilbert Ecological consequences of a coevolved mutualism between butterflies and plants , 1975, Coevolution of Animals and Plants.

[93]  J. Mallet,et al.  Variable Selection and the Coexistence of Multiple mimetic forms of the Butterfly Heliconius numata , 1999, Evolutionary Ecology.

[94]  C. Salazar,et al.  Multiple sources of reproductive isolation in a bimodal butterfly hybrid zone , 2010, Journal of evolutionary biology.

[95]  C. Jiggins,et al.  Assortative Mating Preferences Among Hybrids Offers a Route to Hybrid Speciation , 2009, Evolution; international journal of organic evolution.

[96]  C. Boggs A General Model of the Role of Male-Donated Nutrients in Female Insects' Reproduction , 1990, The American Naturalist.

[97]  A. Brower Phylogeny of Heliconius Butterflies Inferred from Mitochondrial DNA Sequences (Lepidoptera: Nymphalidae) , 1994 .

[98]  Alison M. Sweeney,et al.  Insect communication: Polarized light as a butterfly mating signal , 2003, Nature.

[99]  J. Turner,et al.  The genetics of some polymorphic forms of the butterflies Heliconius melpomene Linnaeus and H. erato Linnaeus. I. Major genes , 1962, Zoologica : scientific contributions of the New York Zoological Society..

[100]  D. Hillis,et al.  Phylogenetic study of heliconiine butterflies based on morphology and restriction analysis of ribosomal RNA genes , 1992 .

[101]  C. Jiggins,et al.  Adaptive Introgression across Species Boundaries in Heliconius Butterflies , 2012, PLoS genetics.

[102]  S. Ott,et al.  Brain composition in Heliconius butterflies, post-eclosion growth and experience dependent neuropil plasticity , 2015, bioRxiv.

[103]  S. Via,et al.  The genetic mosaic suggests a new role for hitchhiking in ecological speciation , 2008, Molecular ecology.

[104]  L. Gilbert,et al.  Mate competition in butterflies , 1994, Nature.

[105]  B. Charlesworth,et al.  Theoretical genetics of Batesian mimicry II. Evolution of supergenes. , 1975, Journal of theoretical biology.

[106]  M. Linares The ghost of mimicry past: laboratory reconstitution of an extinct butterfly ‘race’ , 1997, Heredity.

[107]  M. Théry,et al.  Cryptic differences in colour among Müllerian mimics: how can the visual capacities of predators and prey shape the evolution of wing colours? , 2014, Journal of evolutionary biology.

[108]  E. Bermingham,et al.  Hybrid incompatibility is consistent with a hybrid origin of Heliconius heurippa Hewitson from its close relatives, Heliconius cydno Doubleday and Heliconius melpomene Linnaeus , 2004, Journal of evolutionary biology.

[109]  Y. Pauchet,et al.  Cytochrome P450‐encoding genes from the Heliconius genome as candidates for cyanogenesis , 2013, Insect molecular biology.

[110]  L. Gilbert,et al.  Insects as selective agents on plant vegetative morphology: egg mimicry reduces egg laying by butterflies. , 1981, Science.

[111]  J. Mallet,et al.  ESTIMATING THE MATING BEHAVIOR OF A PAIR OF HYBRIDIZING HELICONIUS SPECIES IN THE WILD , 1998, Evolution; international journal of organic evolution.

[112]  Camilo Salazar,et al.  Genome‐wide patterns of divergence and gene flow across a butterfly radiation , 2013, Molecular ecology.

[113]  R. B. Srygley Locomotor mimicry in Heliconius butterflies: contrast analyses of flight morphology and kinematics , 1999 .

[114]  H. Bates,et al.  XXXII. Contributions to an Insect Fauna of the Amazon Valley. Lepidoptera: Heliconidæ. , 1862 .

[115]  R. Menzel,et al.  The evolutionary adaptation of flower colours and the insect pollinators' colour vision , 1992, Journal of Comparative Physiology A.

[116]  L. Gilbert,et al.  A male gift to its partner? Cyanogenic glycosides in the spermatophore of longwing butterflies (Heliconius) , 2006, Naturwissenschaften.

[117]  P. Nosil,et al.  The genomics of speciation-with-gene-flow. , 2012, Trends in genetics : TIG.

[118]  N. Pierce Origin of Species , 1914, Nature.

[119]  James Mallet,et al.  Multilocus Species Trees Show the Recent Adaptive Radiation of the Mimetic Heliconius Butterflies , 2014, bioRxiv.

[120]  SPECIALIZED AVIAN PREDATORS REPEATEDLY ATTACK NOVEL COLOR MORPHS OF HELICONIUS BUTTERFLIES , 2004, Evolution; international journal of organic evolution.

[121]  H. Hoekstra,et al.  Molecular spandrels: tests of adaptation at the genetic level , 2011, Nature Reviews Genetics.

[122]  Patrik Nosil,et al.  Genomic divergence during speciation: causes and consequences , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[123]  J. Mallet Gregarious Roosting and Home Range in Heliconius Butterflies , 2010 .

[124]  H. Hoekstra,et al.  Molecular spandrels: tests of adaptation at the genetic level , 2011, Nature Reviews Genetics.

[125]  J. Turner Mimicry : The Palatability Spectrum and its ConseqLtences , 2015 .

[126]  E. Mayr Systematics and the Origin of Species from the Viewpoint of a Zoologist , 1943 .

[127]  Simon H. Martin,et al.  Genome-wide evidence for speciation with gene flow in Heliconius butterflies , 2013, Genome research.

[128]  P. Chai Field observations and feeding experiments on the responses of rufous‐tailed jacamars (Galbula ruficauda) to free‐flying butterflies in a tropical rainforest , 1986 .

[129]  Durrell D. Kapan,et al.  Three-butterfly system provides a field test of müllerian mimicry , 2001, Nature.

[130]  E. Snell-Rood,et al.  An overview of the evolutionary causes and consequences of behavioural plasticity , 2013, Animal Behaviour.

[131]  C. Jiggins,et al.  A golden age for evolutionary genetics? Genomic studies of adaptation in natural populations. , 2010, Trends in genetics : TIG.

[132]  L. Gilbert,et al.  Pollen flow in Psiguria warscewiczii: a comparison of Heliconius butterflies and hummingbirds , 2004, Oecologia.

[133]  W. Gehring,et al.  The Drosophila homeobox gene optix is capable of inducing ectopic eyes by an eyeless-independent mechanism. , 2000, Development.

[134]  M. J. Thompson,et al.  Supergenes and their role in evolution , 2014, Heredity.

[135]  C. Salcedo Pollen Preference for Psychotria sp. is Not Learned in the Passion Flower Butterfly, Heliconius erato , 2011, Journal of insect science.

[136]  Population genomics of parallel hybrid zones in the mimetic butterflies, H. melpomene and H. erato , 2013 .

[137]  C. Salcedo Environmental Elements Involved in Communal Roosting in Heliconius Butterflies (Lepidoptera: Nymphalidae) , 2010, Environmental entomology.

[138]  J. Mallet,et al.  Phylogenetic discordance at the species boundary: comparative gene genealogies among rapidly radiating Heliconius butterflies. , 2002, Molecular biology and evolution.

[139]  L. Brower,et al.  Experimental studies of mimicry. 7. Relative palatability and Müllerian mimicry among neotropical butterflies of the subfamily Heliconiinae , 1963, Zoologica : scientific contributions of the New York Zoological Society..

[140]  Simon H. Martin,et al.  Female Behaviour Drives Expression and Evolution of Gustatory Receptors in Butterflies , 2013, PLoS genetics.

[141]  J. Smiley ANT CONSTANCY AT PASSIFLORA EXTRAFLORAL NECTARIES: EFFECTS ON CATERPILLAR SURVIVAL' , 1986 .

[142]  C. Jiggins,et al.  Mimicry and the evolution of premating isolation in Heliconius melpomene Linnaeus , 2004, Journal of evolutionary biology.

[143]  C. Jiggins,et al.  Pervasive genetic associations between traits causing reproductive isolation in Heliconius butterflies , 2010, Proceedings of the Royal Society B: Biological Sciences.

[144]  J. Mallet,et al.  Do pollen feeding, pupal-mating and larval gregariousness have a single origin in Heliconius butterflies? Inferences from multilocus DNA sequence data , 2007 .

[145]  J. Merilä,et al.  Adaptive brain size divergence in nine‐spined sticklebacks (Pungitius pungitius)? , 2009, Journal of evolutionary biology.

[146]  R. Meldola Sexual Selection , 1871, Nature.

[147]  J. Mallet,et al.  Why are there so many mimicry rings? Correlations between habitat, behaviour and mimicry in Heliconius butterflies , 1995 .

[148]  J. Mallet Hybrid zones of Heliconius butterflies in Panama and the stability and movement of warning colour clines , 1986, Heredity.

[149]  C. Marshall,et al.  Dissecting comimetic radiations in Heliconius reveals divergent histories of convergent butterflies , 2010, Proceedings of the National Academy of Sciences.

[150]  Durrell D. Kapan,et al.  Localization of Müllerian Mimicry Genes on a Dense Linkage Map of Heliconius erato , 2006, Genetics.

[151]  Patricio A. Salazar,et al.  Population genomics of parallel hybrid zones in the mimetic butterflies, H. melpomene and H. erato , 2013, bioRxiv.

[152]  L. Gilbert,et al.  Male Contribution to Egg Production in Butterflies: Evidence for Transfer of Nutrients at Mating , 1979, Science.

[153]  Seth M. Bybee,et al.  UV Photoreceptors and UV-Yellow Wing Pigments in Heliconius Butterflies Allow a Color Signal to Serve both Mimicry and Intraspecific Communication , 2011, The American Naturalist.

[154]  J. Mallet,et al.  Hybrid sterility, Haldane's rule and speciation in Heliconius cydno and H. melpomene. , 2002, Genetics.

[155]  J. Felsenstein SKEPTICISM TOWARDS SANTA ROSALIA, OR WHY ARE THERE SO FEW KINDS OF ANIMALS? , 1981, Evolution; international journal of organic evolution.

[156]  W. Rice,et al.  LABORATORY EXPERIMENTS ON SPECIATION: WHAT HAVE WE LEARNED IN 40 YEARS? , 1993, Evolution; international journal of organic evolution.

[157]  L. Gilbert,et al.  SEXUAL SELECTION DRIVES THE EVOLUTION OF ANTIAPHRODISIAC PHEROMONES IN BUTTERFLIES , 2011, Evolution; international journal of organic evolution.

[158]  N. Wahlberg,et al.  Nymphalid butterflies diversify following near demise at the Cretaceous/Tertiary boundary , 2009, Proceedings of the Royal Society B: Biological Sciences.

[159]  Troy Zars,et al.  Behavioral functions of the insect mushroom bodies , 2000, Current Opinion in Neurobiology.

[160]  J. Mallet,et al.  The anatomy of a ‘suture zone’ in Amazonian butterflies: a coalescent‐based test for vicariant geographic divergence and speciation , 2010, Molecular ecology.

[161]  Michael Charleston,et al.  Phylogenetic Codivergence Supports Coevolution of Mimetic Heliconius Butterflies , 2012, PloS one.

[162]  C. Jiggins,et al.  Interspecific sexual attraction because of convergence in warning colouration: is there a conflict between natural and sexual selection in mimetic species? , 2008, Journal of evolutionary biology.

[163]  L. Gilbert Postmating female odor in Heliconius butterflies: a male-contributed antiaphrodisiac? , 1976, Science.

[164]  S. Humphray,et al.  Convergent Evolution in the Genetic Basis of Müllerian Mimicry in Heliconius Butterflies , 2008, Genetics.

[165]  N. Patrik What is ecological speciation , 2012 .

[166]  J. Mallet,et al.  Ecological and genetic factors influencing the transition between host‐use strategies in sympatric Heliconius butterflies , 2013, Journal of evolutionary biology.

[167]  K. S. Brown THE BIOLOGY OF HELICONIUS AND RELATED GENERA , 1981 .

[168]  E. Bermingham,et al.  A hybrid zone provides evidence for incipient ecological speciation in Heliconius butterflies , 2008, Molecular ecology.

[169]  J Mallet,et al.  A species definition for the modern synthesis. , 1995, Trends in ecology & evolution.

[170]  A. Lister The role of behaviour in adaptive morphological evolution of African proboscideans , 2013, Nature.

[171]  C. Jiggins,et al.  The genetic basis of an adaptive radiation: warning colour in two Heliconius species , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[172]  J. Mallet,et al.  Polyphyly and gene flow between non-sibling Heliconius species , 2006, BMC Biology.

[173]  Paul Schedl,et al.  The locus of , 1984 .

[174]  R. D. Reed,et al.  Genomic hotspots of adaptation in butterfly wing pattern evolution. , 2008, Current opinion in genetics & development.

[175]  R. A. Fisher,et al.  The Genetical Theory of Natural Selection , 1931 .

[176]  J. Mallet The genetics of warning colour in Peruvian hybrid zones of Heliconius erato and H. melpomene , 1989, Proceedings of the Royal Society of London. B. Biological Sciences.

[177]  B. Irgang,et al.  Estrutura floral das angiospermas usadas por Heliconius erato phyllis (Lepidoptera, Nymphalidae) no Rio Grande do Sul, Brasil , 2001 .

[178]  H. Nijhout,et al.  An analysis of the phenotypic effects of certain colour pattern genes in Heliconius (Lepidoptera: Nymphalidae) , 1990 .

[179]  C. Penz Higher level phylogeny for the passion‐vine butterflies (Nymphalidae, Heliconiinae) based on early stage and adult morphology , 1999 .

[180]  A. Monteiro,et al.  Biased learning affects mate choice in a butterfly , 2012, Proceedings of the National Academy of Sciences.

[181]  J. Feder,et al.  Host plant and latitude‐related diapause variation in Rhagoletis pomonella: a test for multifaceted life history adaptation on different stages of diapause development , 2007, Journal of evolutionary biology.

[182]  J. Smiley Heliconius caterpillar mortality during establishment on plants with and without attending ants , 1985 .

[183]  N. Besansky,et al.  No evidence for biased co-transmission of speciation islands in Anopheles gambiae , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[184]  James Mallet,et al.  Genomic islands of divergence in hybridizing Heliconius butterflies identified by large-scale targeted sequencing , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[185]  W. W. Benson,et al.  Adaptive Polymorphism Associated with Multiple Mullerian Mimicry in Heliconius numata (Lepid. Nymph.) , 1974 .

[186]  P. Chai Wing coloration of free-flying neotropical butterflies as a signal learned by a specialized avian predator , 1988 .

[187]  V. Orgogozo,et al.  THE LOCI OF REPEATED EVOLUTION: A CATALOG OF GENETIC HOTSPOTS OF PHENOTYPIC VARIATION , 2013, Evolution; international journal of organic evolution.

[188]  A. Brodin,et al.  A ROLE FOR LEARNING IN POPULATION DIVERGENCE OF MATE PREFERENCES , 2010, Evolution; international journal of organic evolution.

[189]  J. D. Fry,et al.  LABORATORY EXPERIMENTS ON SPECIATION , 2009 .

[190]  Alicia M. Frame,et al.  Magic traits in speciation: 'magic' but not rare? , 2011, Trends in ecology & evolution.

[191]  David Reznick,et al.  Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation? , 2008, Trends in ecology & evolution.

[192]  N. Nadeau,et al.  Divergent warning patterns contribute to assortative mating between incipient Heliconius species , 2014, Ecology and evolution.

[193]  Simon W. Baxter,et al.  Genomic Hotspots for Adaptation: The Population Genetics of Müllerian Mimicry in Heliconius erato , 2010, PLoS genetics.

[194]  E. Bermingham,et al.  Two sisters in the same dress: Heliconius cryptic species , 2008, BMC Evolutionary Biology.

[195]  J. Mallet,et al.  Host plant adaptation has not played a role in the recent speciation of Heliconius himera and Heliconius erato , 1997 .

[196]  S. Swihart The neural basis of colour vision in the butterfly, Heliconius erato , 1972 .

[197]  journals Iosr,et al.  Experimental Studies on , 2015 .

[198]  Durrell D. Kapan,et al.  First-generation linkage map of the warningly colored butterfly Heliconius erato , 2005, Heredity.

[199]  L. Gilbert,et al.  An Antiaphrodisiac in Heliconius melpomene Butterflies , 2007, Journal of Chemical Ecology.

[200]  Turner J.R.G. Butterfly mimicry: the genetical evolution of an adaptation. , 1977 .

[201]  M. Linares THE GHOST OF MIMICRY PAST : LABORATORY RECONSTITUTION OF AN EXTINCT BUTTERFLY 'RACE' , 1997 .

[202]  M. Wikelski,et al.  The genomic landscape underlying phenotypic integrity in the face of gene flow in crows , 2014, Science.

[203]  Camilo Salazar,et al.  Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry , 2011, Nature.

[204]  Charles T. Brues The Geographical Distribution of the Onycophora , 1923, The American Naturalist.

[205]  R. I. Hill,et al.  Polymorphic Butterfly Reveals the Missing Link in Ecological Speciation , 2009, Science.

[206]  C H WADDINGTON,et al.  Evolutionary Adaptation , 2015, Perspectives in biology and medicine.

[207]  J. Fellous,et al.  Visual Processing in the Central Bee Brain , 2009, The Journal of Neuroscience.

[208]  James Owen Drife,et al.  A golden age , 2012, BMJ : British Medical Journal.

[209]  L. Gilbert,et al.  De novo Synthesis vs. Sequestration: Negatively Correlated Metabolic Traits and the Evolution of Host Plant Specialization in Cyanogenic Butterflies , 2006, Journal of Chemical Ecology.

[210]  F. Muller Ituna and Thyridia; a remarkable case of mimicry in butterflies , 1879 .

[211]  H. Nijhout,et al.  The development and evolution of butterfly wing patterns , 1991 .

[212]  M. Kronforst,et al.  MATE PREFERENCE ACROSS THE SPECIATION CONTINUUM IN A CLADE OF MIMETIC BUTTERFLIES , 2011, Evolution; international journal of organic evolution.

[213]  C. Rowe,et al.  Why are warning displays multimodal? , 2013, Behavioral Ecology and Sociobiology.

[214]  L. Gilbert Butterfly-Plant Coevolution: Has Passiflora adenopoda Won the Selectional Race with Heliconiine Butterflies? , 1971, Science.

[215]  J. Mallet,et al.  Natural hybridization in heliconiine butterflies: the species boundary as a continuum , 2007, BMC Evolutionary Biology.

[216]  J. Nation,et al.  Spectrum of Cyanide Toxicity and Allocation in Heliconius erato and Passiflora Host Plants , 2008, Journal of Chemical Ecology.

[217]  S. Swihart,et al.  Colour selection and learned feeding preferences in the butterfly, Heliconius charitonius Linn , 1970 .

[218]  H. Nijhout,et al.  optix Drives the Repeated Convergent Evolution of Butterfly Wing Pattern Mimicry , 2011, Science.

[219]  H. Bates Contributions to an Insect Fauna of the Amazon Valley: Lepidoptera, Heliconidae , 2011 .

[220]  Robert D Reed,et al.  Wing patterning gene redefines the mimetic history of Heliconius butterflies , 2011, Proceedings of the National Academy of Sciences.

[221]  K. S. Brown,et al.  Genetics and the Evolution of Muellerian Mimicry in Heliconius Butterflies , 1985 .

[222]  Jocelyn Crane,et al.  Imaginal behavior of a Trinidad butterfly, Heliconius erato hydara Hewitson, with special reference to the social use of color , 1955, Zoologica : scientific contributions of the New York Zoological Society..

[223]  J. Coyne,et al.  THE LOCUS OF EVOLUTION: EVO DEVO AND THE GENETICS OF ADAPTATION , 2007, Evolution; international journal of organic evolution.

[224]  S. Farris Evolution of insect mushroom bodies: old clues, new insights , 2005 .

[225]  R. I. Hill,et al.  Comparative population genetics of a mimicry locus among hybridizing Heliconius butterfly species , 2011, Heredity.

[226]  G. Robinson,et al.  Selective neuroanatomical plasticity and division of labour in the honeybee , 1993, Nature.

[227]  L. Gilbert,et al.  Insect metabolism: Preventing cyanide release from leaves , 2000, Nature.

[228]  Johannes Jaeger,et al.  A quantitative atlas of Even-skipped and Hunchback expression in Clogmia albipunctata (Diptera: Psychodidae) blastoderm embryos , 2014, EvoDevo.

[229]  M. Condon,et al.  SEX EXPRESSION OF GURANIA AND PSIGURIA (CUCURBITACEAE): NEOTROPICAL VINES THAT CHANGE SEX , 1988 .

[230]  Fiona Doyle Two Sisters , 2019, Short Plays with Great Roles for Women.

[231]  D. Papaj,et al.  Patterns of Phenotypic Plasticity in Common and Rare Environments: A Study of Host Use and Color Learning in the Cabbage White Butterfly Pieris rapae , 2009, The American Naturalist.

[232]  C. Wiklund,et al.  Mating in the afternoon: Time-saving in courtship and remating by females of a polyandrous butterfly Pieris napi L. , 1989, Behavioral Ecology and Sociobiology.

[233]  Durrell D. Kapan,et al.  Multi-Allelic Major Effect Genes Interact with Minor Effect QTLs to Control Adaptive Color Pattern Variation in Heliconius erato , 2013, PloS one.

[234]  L. Gilbert,et al.  Ovarian Dynamics in Heliconiine Butterflies: Programmed Senescence versus Eternal Youth , 1977, Science.

[235]  J. Mallet,et al.  What can hybrid zones tell us about speciation? The case of Heliconius erato and H. himera (Lepidoptera: Nymphalidae) , 1996 .

[236]  R. B. Srygley,et al.  Predation and the Flight, Morphology, and Temperature of Neotropical Rain-Forest Butterflies , 1990, The American Naturalist.

[237]  T. Sherratt,et al.  Spatial mosaic formation through frequency-dependent selection in Müllerian mimicry complexes. , 2006, Journal of theoretical biology.

[238]  J. Mallet,et al.  Mimicry: developmental genes that contribute to speciation , 2003, Evolution & development.

[239]  Nicholas Stiffler,et al.  Population Genomics of Parallel Adaptation in Threespine Stickleback using Sequenced RAD Tags , 2010, PLoS genetics.

[240]  S. Nylin,et al.  HOST PLANT UTILIZATION, HOST RANGE OSCILLATIONS AND DIVERSIFICATION IN NYMPHALID BUTTERFLIES: A PHYLOGENETIC INVESTIGATION , 2013, Evolution; international journal of organic evolution.

[241]  N. Mundy A window on the genetics of evolution: MC1R and plumage colouration in birds , 2005, Proceedings of the Royal Society B: Biological Sciences.