Mite species identification in the production of allergenic extracts for clinical use and in environmental samples by ribosomal DNA amplification

The identification of allergy‐causing mites is conventionally based on morphological characters. However, molecular taxonomy using ribosomal DNA (rDNA) may be particularly useful in the analysis of mite cultures and purified mite fractions in the production of allergenic extracts. Full‐length internal transcribed spacers (ITS1 and ITS2) were obtained from Dermatophagoides farinae, Dermatophagoides pteronyssinus, Dermatophagoides microceras and Euroglyphus maynei (Astigmata: Pyroglyphidae), Glycyphagus domesticus and Lepidoglyphus destructor (Astigmata: Glycyphagidae), Tyrophagus fanetzhangorum, Tyrophagus putrescentiae, Tyrophagus longior, Tyrophagus neiswanderi, Acarus farris and Acarus siro (Astigmata: Acaridae), and Blomia tropicalis (Astigmata: Echymopodidae), using mite‐specific primers. Polymerase chain reaction (PCR) products were digested with HpaII and RsaI restriction enzymes in order to produce species‐specific PCR restricted fragment length polymorphism (RFLP) profiles. A semi‐nested re‐amplification step was introduced before the RFLP in order to apply the method to environmental samples. Results demonstrate that rDNA sequences can be used for the unambiguous identification of mite species. The PCR–RFLP system allows the identification of species in purified mite fractions when the availability of intact adult mite bodies for morphological identification is limited. This reliable and straightforward PCR–RFLP system and the rDNA sequences obtained can be of use in the identification of allergy‐causing mite species.

[1]  T. Carrillo,et al.  Analysis of mite allergic patients in a diverse territory by improved diagnostic tools , 2012, Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology.

[2]  F. Frati,et al.  Requirements for acquiring a high-quality house dust mite extract for allergen immunotherapy , 2012, Drug design, development and therapy.

[3]  John L. Spouge,et al.  Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi , 2012, Proceedings of the National Academy of Sciences.

[4]  Jinjun Wang,et al.  Sequence Analysis of the Ribosomal Internal Transcribed Spacers Region in Psocids (Psocoptera: Liposcelididae) for Phylogenetic Inference and Species Discrimination , 2011, Journal of economic entomology.

[5]  S. Wong,et al.  Molecular identification of house dust mites and storage mites , 2011, Experimental and Applied Acarology.

[6]  M. Navajas,et al.  A critical review on some closely related species of Tetranychus sensu stricto (Acari: Tetranychidae) in the public DNA sequences databases , 2011, Experimental and Applied Acarology.

[7]  T. Dabaghmanesh,et al.  The fauna and distribution of house dust mites in residential homes of Bandar Abbas District, Southern Iran , 2011, Experimental and Applied Acarology.

[8]  Xunjia Cheng,et al.  Identification of astigmatid mites using ITS2 and COI regions , 2011, Parasitology Research.

[9]  W. Thomas,et al.  House dust mite allergens in asthma and allergy. , 2010, Trends in molecular medicine.

[10]  P. Klimov,et al.  Conservation of the name Tyrophagus putrescentiae, a medically and economically important mite species (Acari: Acaridae) , 2009 .

[11]  Daniel H. Huson,et al.  Dendroscope: An interactive viewer for large phylogenetic trees , 2007, BMC Bioinformatics.

[12]  S. Morin,et al.  ITS2 sequences as barcodes for identifying and analyzing spider mites (Acari: Tetranychidae) , 2007, Experimental and Applied Acarology.

[13]  P. Castañera,et al.  Development and survival of the cheese mites, Acarus farris and Tyrophagus neiswanderi (Acari: Acaridae), at constant temperatures and 90% relative humidity , 2007 .

[14]  C. Cutillas,et al.  Utility of ITS1–5.8S–ITS2 and 16S mitochondrial DNA sequences for species identification and phylogenetic inference within the Rhinonyssus coniventris species complex (Acari: Rhinonyssidae) , 2007, Parasitology Research.

[15]  Deborah Jarvis,et al.  Distribution and determinants of house dust mite allergens in Europe: the European Community Respiratory Health Survey II. , 2006, The Journal of allergy and clinical immunology.

[16]  C. Vidal,et al.  House dust mite species and allergen levels in Galicia, Spain: a cross-sectional, multicenter, comparative study. , 2006, Journal of investigational allergology & clinical immunology.

[17]  M. Diaz-Mendoza,et al.  Diversity of trypsins in the Mediterranean corn borer Sesamia nonagrioides (Lepidoptera: Noctuidae), revealed by nucleic acid sequences and enzyme purification. , 2005, Insect biochemistry and molecular biology.

[18]  R. J. Herrera,et al.  Molecular identification of pathogenic house dust mites using 12S rRNA sequences , 2005, Electrophoresis.

[19]  G. McCormack,et al.  Molecular systematics of Acarus siro s. lat., a complex of stored food pests. , 2004, Molecular phylogenetics and evolution.

[20]  M. Navajas,et al.  Sequence Variation of Ribosomal Internal Transcribed Spacers (ITS) in Commercially Important Phytoseiidae Mites , 1999, Experimental & Applied Acarology.

[21]  M. Zahler,et al.  Genetic Differentiation of Mites of the Genus Chorioptes (Acari: Psoroptidae) , 1999, Experimental & Applied Acarology.

[22]  C. Tanaka,et al.  Identification of astigmatid mites using the second internal transcribed spacer (ITS2) region and its application for phylogenetic study , 2004, Experimental & applied acarology.

[23]  B. Fenton,et al.  The Application of Molecular Markers in the Study of Diversity in Acarology: a Review , 2004, Experimental & Applied Acarology.

[24]  M. Navajas,et al.  Molecular discrimination between the spider mite Tetranychus evansi Baker & Pritchard, an important pest of tomatoes in southern Africa, and the closely related species T. urticae Koch (Acarina : Tetranychidae) : : short communication , 2003 .

[25]  F. Schaffner,et al.  Polymerase chain reaction-based differentiation of the mosquito sibling species Anopheles claviger s.s. and Anopheles petragnani (Diptera: Culicidae). , 2003, The American journal of tropical medicine and hygiene.

[26]  M. Osakabe,et al.  Discrimination of four Japanese Tetranychus species (Acari: Tetranychidae) using PCR-RFLP of the inter-transcribed spacer region of nuclear ribosomal DNA , 2002 .

[27]  M. Navajas,et al.  Synonymy between two spider mite species, Tetranychus kanzawai and T. hydrangeae (Acari: Tetranychidae), shown by ribosomal ITS2 sequences and cross-breeding experiments , 2001, Bulletin of Entomological Research.

[28]  M. Crabtree,et al.  Identification ofCulex vishnuiSubgroup (Diptera: Culicidae) Mosquitoes from the Ryukyu Archipelago, Japan: Development of a Species-Diagnostic Polymerase Chain Reaction Assay Based on Sequence Variation in Ribosomal DNA Spacers , 2000, Journal of medical entomology.

[29]  W. Black,et al.  Molecular genetic key for the identification of 17 Ixodes species of the United States (Acari:Ixodidae): a methods model. , 1999, The Journal of parasitology.

[30]  M. Colloff,et al.  Taxonomy and identification of dust mites , 1998, Allergy.

[31]  P. Boursot,et al.  Species-wide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitochondrial COI polymorphism , 1998, Heredity.

[32]  M. Navajas,et al.  Molecular comparison of the sibling species Tetranychus pueraricola Ehara et Gotoh and T urticae Koch (Acari: Tetranychidae) , 1998 .

[33]  M. Colloff,et al.  Pictorial keys for the identification of domestic mites , 1992, Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology.

[34]  D. Hillis,et al.  Ribosomal DNA: Molecular Evolution and Phylogenetic Inference , 1991, The Quarterly Review of Biology.

[35]  A. Hughes The Mites of Stored Food and Houses , 1976 .