Demosponge steroid biomarker 26-methylstigmastane provides evidence for Neoproterozoic animals

[1]  A. Bekker,et al.  Ediacara biota flourished in oligotrophic and bacterially dominated marine environments across Baltica , 2018, Nature Communications.

[2]  J. Brocks,et al.  Synthesis of 26-methyl cholestane and identification of cryostanes in mid-Neoproterozoic sediments , 2018 .

[3]  P. Williams,et al.  Ctenophore relationships and their placement as the sister group to all other animals , 2017, Nature Ecology & Evolution.

[4]  Yosuke Hoshino,et al.  The rise of algae in Cryogenian oceans and the emergence of animals , 2017, Nature.

[5]  S. Pomponi,et al.  Divergence times in demosponges (Porifera): first insights from new mitogenomes and the inclusion of fossils in a birth-death clock model , 2017, bioRxiv.

[6]  J. Botting,et al.  Early sponge evolution: A review and phylogenetic framework , 2017 .

[7]  G. Wörheide,et al.  Dating early animal evolution using phylogenomic data , 2017, Scientific Reports.

[8]  D. Richter,et al.  A Large and Consistent Phylogenomic Dataset Supports Sponges as the Sister Group to All Other Animals , 2017, Current Biology.

[9]  K. Williford,et al.  Lipid biomarker stratigraphic records through the Late Devonian Frasnian/Famennian boundary: Comparison of high- and low-latitude epicontinental marine settings , 2016 .

[10]  J. Hope,et al.  Early sponges and toxic protists: possible sources of cryostane, an age diagnostic biomarker antedating Sturtian Snowball Earth , 2016, Geobiology.

[11]  Alex de Mendoza,et al.  Sterol and genomic analyses validate the sponge biomarker hypothesis , 2016, Proceedings of the National Academy of Sciences.

[12]  Ziheng Yang,et al.  Uncertainty in the Timing of Origin of Animals and the Limits of Precision in Molecular Timescales , 2015, Current Biology.

[13]  R. Summons,et al.  The molecular record of Cryogenian sponges – a response to Antcliffe (2013) , 2015 .

[14]  S. Xiao,et al.  Assessing the veracity of Precambrian ‘sponge’ fossils using in situ nanoscale analytical techniques , 2015 .

[15]  F. Macdonald,et al.  A Cryogenian chronology: Two long-lasting synchronous Neoproterozoic glaciations , 2015 .

[16]  G. Love,et al.  Scarcity of the C30 sterane biomarker, 24-n-propylcholestane, in Lower Paleozoic marine paleoenvironments , 2015 .

[17]  J. Bernhard,et al.  Identification of 24-n-propylidenecholesterol in a member of the Foraminifera , 2013 .

[18]  J. Antcliffe Questioning the evidence of organic compounds called sponge biomarkers , 2013 .

[19]  S. Finnegan,et al.  Lipid biomarkers record fundamental changes in the microbial community structure of tropical seas during the Late Ordovician Hirnantian glaciation , 2013 .

[20]  D. Erwin,et al.  The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals , 2011, Science.

[21]  J. Zumberge,et al.  Hydrocarbon biomarkers of Neoproterozoic to Lower Cambrian oils from eastern Siberia , 2011 .

[22]  P. Cárdenas,et al.  Molecular Phylogeny of the Astrophorida (Porifera, Demospongiae p) Reveals an Unexpected High Level of Spicule Homoplasy , 2011, PloS one.

[23]  T. Dandekar,et al.  Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges , 2011, The ISME Journal.

[24]  B. Tursch,et al.  Chemical studies of marine invertebrates. XXXVI(1). Strongylosterol, a novel C-30 sterol from the sponge strongylophora durissima Dendy (2). , 2010 .

[25]  G. Boyer,et al.  Sterol Chemotaxonomy of Marine Pelagophyte Algae , 2009, Chemistry & biodiversity.

[26]  N. Butterfield,et al.  Biogeochemistry: Early animals out in the cold , 2009, Nature.

[27]  Daniel J. Condon,et al.  Fossil steroids record the appearance of Demospongiae during the Cryogenian period , 2009, Nature.

[28]  R. Summons,et al.  Origin of petroleum in the Neoproterozoic–Cambrian South Oman Salt Basin , 2009 .

[29]  V. Thiel,et al.  The sterols of calcareous sponges (Calcarea, Porifera). , 2008, Chemistry and physics of lipids.

[30]  A. Knoll,et al.  Sterols in red and green algae: quantification, phylogeny, and relevance for the interpretation of geologic steranes , 2008, Geobiology.

[31]  A. Knoll,et al.  Sterols in a unicellular relative of the metazoans , 2008, Proceedings of the National Academy of Sciences.

[32]  C. Snape,et al.  The use of model compounds to investigate the release of covalently bound biomarkers via hydropyrolysis , 2006 .

[33]  C. Djerassi,et al.  Localization of long-chain fatty acids and unconventional sterols in spherulous cells of a marine sponge , 1988, Lipids.

[34]  C. Snape,et al.  Hydropyrolysis of steroids: a preparative step for compound-specific carbon isotope ratio analysis. , 2005, Rapid communications in mass spectrometry : RCM.

[35]  J. Bernhard,et al.  Anaerobic diagenesis of silica and carbon in continental margin sediments : Discrete zones of TCO2 production , 2005 .

[36]  J. M. Moldowan,et al.  Biomarkers from Units in the Uinta Mountain and Chuar Groups , 2005 .

[37]  C. Snape,et al.  A catalytic hydropyrolysis method for the rapid screening of microbial cultures for lipid biomarkers , 2005 .

[38]  V. Thiel,et al.  The steroids of hexactinellid sponges , 2002, Naturwissenschaften.

[39]  J. Volkman,et al.  Sterols in microorganisms , 2002, Applied Microbiology and Biotechnology.

[40]  T. Pérez,et al.  Morphological, chemical and biochemical characterization of a new species of sponge without skeleton (Porifera, Demospongiae) from the Mediterranean Sea , 2000 .

[41]  C. Snape,et al.  Comparison of covalently-bound aliphatic biomarkers released via hydropyrolysis with their solvent-extractable counterparts for a suite of Kimmeridge clays , 1998 .

[42]  S. M. Barrett,et al.  Microalgal biomarkers: A review of recent research developments , 1998 .

[43]  K. Peters,et al.  Recognition of an Infracambrian Source Rock Based on Biomarkers in the Baghewala-1 Oil, India , 1995 .

[44]  C. Sim,et al.  A Systematic Study on the Marine Sponges in Korea 12. Tetractinomorpha (Porifera: Demospongiae) , 1995 .

[45]  S. M. Barrett,et al.  Sterol biomarkers for microalgae from the green algal class Prasinophyceae , 1994 .

[46]  D. Watt,et al.  Paleoenvironmental implications of novel C30 steranes in Precambrian to Cenozoic Age petroleum and bitumen , 1994 .

[47]  P. Thomas Sponges of Papua and New Guinea-Part Order Haplosclerida topsent , 1991 .

[48]  D. M. Ward,et al.  Distinctive hydrocarbon biomarkers from fossiliferous sediment of the Late Proterozoic Walcott Member, Chuar Group, Grand Canyon, Arizona , 1988 .

[49]  C. Djerassi,et al.  Biosynthetic studies of marine lipids. 14. 24(28)-Dehydroaplysterol and other sponge sterols from Jaspis stellifera , 1988 .

[50]  N. Sarma,et al.  Chemistry of Herbacin and New Unusual Sterols from Marine Sponge Dysidea herbacea. , 1988 .

[51]  C. Djerassi,et al.  Biosynthetic studies of marine lipids. 9. Stereochemical aspects and hydrogen migrations in the biosynthesis of the triply alkylated side chain of the sponge sterol strongylosterol , 1986 .

[52]  J. Volkman A review of sterol markers for marine and terrigenous organic matter , 1986 .

[53]  W. Hofheinz,et al.  24‐Isopropylcholesterol and 22‐Dehydro‐24‐isopropylcholesterol, Novel Sterols from a Sponge , 1979 .

[54]  C. Djerassi,et al.  Minor and trace sterols in marine invertebrates. 8. Isolation, structure elucidation, and partial synthesis of two novel sterols - stelliferasterol and isostelliferasterol , 1978 .

[55]  C. Djerassi,et al.  Determination of the absolute configuration of stelliferasterol and strongylosterol - two marine sterols with “extended” side chains , 1978 .