Phase space analysis of the Hermite semigroup and applications to nonlinear global well-posedness
暂无分享,去创建一个
Fabio Nicola | S. Ivan Trapasso | Sundaram Thangavelu | Divyang G. Bhimani | Ramesh Manna | S. Thangavelu | F. Nicola | S. I. Trapasso | Ramesh Manna
[1] 'Arp'ad B'enyi,et al. Modulation spaces, Wiener amalgam spaces, and Brownian motions , 2010, 1007.1957.
[2] N. Mizoguchi,et al. Optimal condition for blow-up of the critical L norm for the semilinear heat equation , 2018, Advances in Mathematics.
[3] T. Tao. Nonlinear dispersive equations : local and global analysis , 2006 .
[4] Critical exponent for evolution equations in modulation spaces , 2016 .
[5] G. Folland. Harmonic analysis in phase space , 1989 .
[6] D. Tataru. PHASE SPACE TRANSFORMS AND MICROLOCAL ANALYSIS , 2005 .
[7] Ramesh Manna. The Cauchy Problem for Non-linear Higher Order Hartree Type Equation in Modulation Spaces , 2018, Journal of Fourier Analysis and Applications.
[8] H. Feichtinger. Generalized Amalgams, With Applications to Fourier Transform , 1990, Canadian Journal of Mathematics.
[9] M. Shubin. Pseudodifferential Operators and Spectral Theory , 1987 .
[10] Jiecheng Chen,et al. Estimates on fractional power dissipative equations in function spaces , 2012 .
[11] M. Sugimoto,et al. The inclusion relation between Sobolev and modulation spaces , 2010, 1009.0895.
[12] K. Okoudjou,et al. Modulation Spaces , 2020 .
[13] L. Rodino,et al. Classes of Degenerate Elliptic Operators in Gelfand-Shilov Spaces , 2008 .
[14] L. Rodino,et al. Global Pseudo-differential calculus on Euclidean spaces , 2010 .
[15] Baoxiang Wang,et al. Harmonic Analysis Method for Nonlinear Evolution Equations, I , 2011 .
[16] L. Rodino,et al. Schrodinger equations with rough Hamiltonians , 2013, 1312.7791.
[17] Divyang G. Bhimani,et al. Hermite Multipliers on Modulation Spaces , 2017, Springer Proceedings in Mathematics & Statistics.
[18] F. Nicola. Phase space analysis of semilinear parabolic equations , 2013, 1308.1909.
[19] J. Toft. Continuity and compactness for pseudo-differential operators with symbols in quasi-Banach spaces or Hörmander classes , 2017 .
[20] T. Iwabuchi. Navier–Stokes equations and nonlinear heat equations in modulation spaces with negative derivative indices , 2010 .
[21] Baoxiang Wang,et al. Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations , 2007 .
[22] Karlheinz Gröchenig,et al. Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.
[23] Juan Luis V'azquez,et al. The Mathematical Theories of Diffusion: Nonlinear and Fractional Diffusion , 2017, 1706.08241.
[24] N. Laskin. Fractional Schrödinger equation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[25] Unimodular Fourier multipliers for modulation spaces , 2006, math/0609097.
[26] H. Feichtinger. Modulation Spaces on Locally Compact Abelian Groups , 2003 .
[27] Holger Rauhut. Coorbit space theory for quasi-Banach spaces , 2005 .
[28] Divyang G. Bhimani,et al. The Hartree–Fock equations in modulation spaces , 2019, Communications in Partial Differential Equations.
[29] S. Thangavelu. Lectures on Hermite and Laguerre expansions , 1993 .
[30] Baoxiang Wang,et al. Modulation Spaces and Nonlinear Evolution Equations , 2012, 1203.4651.
[31] N. Garofalo. Fractional thoughts , 2017, New Developments in the Analysis of Nonlocal Operators.
[32] Vittoria Pierfelice,et al. Strichartz estimates for the Schrödinger and heat equations perturbed with singular and time dependent potentials , 2006, Asymptot. Anal..
[33] E. Cordero. On the local well-posedness of the nonlinear heat equation associated to the fractional Hermite operator in modulation spaces , 2020, 2007.07272.
[34] Herbert Koch,et al. L^p eigenfunction bounds for the Hermite operator , 2004 .
[35] J. Toft. Continuity properties for modulation spaces, with applications to pseudo-differential calculus—I , 2004 .
[36] S. Thangavelu. A note on fractional powers of the Hermite operator , 2018, 1801.08343.
[37] A. Janssen. Hermite Function Description of Feichtinger’s Space S0 , 2005 .
[38] H. Feichtinger,et al. Navier-Stokes equation in super-critical spacesEp,qs , 2020 .
[39] B. Helffer. Théorie spectrale pour des opérateurs globalement elliptiques , 1984 .
[40] S. Samarah,et al. Time-frequency analysis on modulation spaces Mmp,q, 0 , 2004 .
[41] L. Rodino,et al. Time-Frequency Analysis of Operators , 2020 .
[42] K. Okoudjou,et al. Local well‐posedness of nonlinear dispersive equations on modulation spaces , 2007, 0704.0833.
[43] Divyang G. Bhimani. The Nonlinear Heat equations with fractional: Laplacian $\&$ harmonic oscillator in modulation spaces , 2019 .
[44] Holger Rauhut. Wiener Amalgam Spaces with respect to Quasi-Banach Spaces , 2005 .
[45] Zhao Li-feng,et al. Isometric decomposition operators, function spaces Ep,qλ and applications to nonlinear evolution equations , 2006 .
[46] 'Arp'ad B'enyi,et al. On the Probabilistic Cauchy Theory for Nonlinear Dispersive PDEs , 2018, Landscapes of Time-Frequency Analysis.