Phase space analysis of the Hermite semigroup and applications to nonlinear global well-posedness

We study the Hermite operator $H=-\Delta+|x|^2$ in $\mathbb{R}^d$ and its fractional powers $H^\beta$, $\beta>0$ in phase space. Namely, we represent functions $f$ via the so-called short-time Fourier, alias Fourier-Wigner or Bargmann transform $V_g f$ ($g$ being a fixed window function), and we measure their regularity and decay by means of mixed Lebesgue norms in phase space of $V_g f$, that is in terms of membership to modulation spaces $M^{p,q}$, $0< p,q\leq \infty$. We prove the complete range of fixed-time estimates for the semigroup $e^{-tH^\beta}$ when acting on $M^{p,q}$, for every $0< p,q\leq \infty$, exhibiting the optimal global-in-time decay as well as phase-space smoothing. As an application, we establish global well-posedness for the nonlinear heat equation for $H^{\beta}$ with power-type nonlinearity (focusing or defocusing), with small initial data in modulation spaces or in Wiener amalgam spaces. We show that such a global solution exhibits the same optimal decay $e^{-c t}$ as the solution of the corresponding linear equation, where $c=d^\beta$ is the bottom of the spectrum of $H^\beta$. This is in sharp contrast to what happens for the nonlinear focusing heat equation without potential, where blow-up in finite time always occurs for (even small) constant initial data - hence in $M^{\infty,1}$.

[1]  'Arp'ad B'enyi,et al.  Modulation spaces, Wiener amalgam spaces, and Brownian motions , 2010, 1007.1957.

[2]  N. Mizoguchi,et al.  Optimal condition for blow-up of the critical L norm for the semilinear heat equation , 2018, Advances in Mathematics.

[3]  T. Tao Nonlinear dispersive equations : local and global analysis , 2006 .

[4]  Critical exponent for evolution equations in modulation spaces , 2016 .

[5]  G. Folland Harmonic analysis in phase space , 1989 .

[6]  D. Tataru PHASE SPACE TRANSFORMS AND MICROLOCAL ANALYSIS , 2005 .

[7]  Ramesh Manna The Cauchy Problem for Non-linear Higher Order Hartree Type Equation in Modulation Spaces , 2018, Journal of Fourier Analysis and Applications.

[8]  H. Feichtinger Generalized Amalgams, With Applications to Fourier Transform , 1990, Canadian Journal of Mathematics.

[9]  M. Shubin Pseudodifferential Operators and Spectral Theory , 1987 .

[10]  Jiecheng Chen,et al.  Estimates on fractional power dissipative equations in function spaces , 2012 .

[11]  M. Sugimoto,et al.  The inclusion relation between Sobolev and modulation spaces , 2010, 1009.0895.

[12]  K. Okoudjou,et al.  Modulation Spaces , 2020 .

[13]  L. Rodino,et al.  Classes of Degenerate Elliptic Operators in Gelfand-Shilov Spaces , 2008 .

[14]  L. Rodino,et al.  Global Pseudo-differential calculus on Euclidean spaces , 2010 .

[15]  Baoxiang Wang,et al.  Harmonic Analysis Method for Nonlinear Evolution Equations, I , 2011 .

[16]  L. Rodino,et al.  Schrodinger equations with rough Hamiltonians , 2013, 1312.7791.

[17]  Divyang G. Bhimani,et al.  Hermite Multipliers on Modulation Spaces , 2017, Springer Proceedings in Mathematics & Statistics.

[18]  F. Nicola Phase space analysis of semilinear parabolic equations , 2013, 1308.1909.

[19]  J. Toft Continuity and compactness for pseudo-differential operators with symbols in quasi-Banach spaces or Hörmander classes , 2017 .

[20]  T. Iwabuchi Navier–Stokes equations and nonlinear heat equations in modulation spaces with negative derivative indices , 2010 .

[21]  Baoxiang Wang,et al.  Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations , 2007 .

[22]  Karlheinz Gröchenig,et al.  Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.

[23]  Juan Luis V'azquez,et al.  The Mathematical Theories of Diffusion: Nonlinear and Fractional Diffusion , 2017, 1706.08241.

[24]  N. Laskin Fractional Schrödinger equation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Unimodular Fourier multipliers for modulation spaces , 2006, math/0609097.

[26]  H. Feichtinger Modulation Spaces on Locally Compact Abelian Groups , 2003 .

[27]  Holger Rauhut Coorbit space theory for quasi-Banach spaces , 2005 .

[28]  Divyang G. Bhimani,et al.  The Hartree–Fock equations in modulation spaces , 2019, Communications in Partial Differential Equations.

[29]  S. Thangavelu Lectures on Hermite and Laguerre expansions , 1993 .

[30]  Baoxiang Wang,et al.  Modulation Spaces and Nonlinear Evolution Equations , 2012, 1203.4651.

[31]  N. Garofalo Fractional thoughts , 2017, New Developments in the Analysis of Nonlocal Operators.

[32]  Vittoria Pierfelice,et al.  Strichartz estimates for the Schrödinger and heat equations perturbed with singular and time dependent potentials , 2006, Asymptot. Anal..

[33]  E. Cordero On the local well-posedness of the nonlinear heat equation associated to the fractional Hermite operator in modulation spaces , 2020, 2007.07272.

[34]  Herbert Koch,et al.  L^p eigenfunction bounds for the Hermite operator , 2004 .

[35]  J. Toft Continuity properties for modulation spaces, with applications to pseudo-differential calculus—I , 2004 .

[36]  S. Thangavelu A note on fractional powers of the Hermite operator , 2018, 1801.08343.

[37]  A. Janssen Hermite Function Description of Feichtinger’s Space S0 , 2005 .

[38]  H. Feichtinger,et al.  Navier-Stokes equation in super-critical spacesEp,qs , 2020 .

[39]  B. Helffer Théorie spectrale pour des opérateurs globalement elliptiques , 1984 .

[40]  S. Samarah,et al.  Time-frequency analysis on modulation spaces Mmp,q, 0 , 2004 .

[41]  L. Rodino,et al.  Time-Frequency Analysis of Operators , 2020 .

[42]  K. Okoudjou,et al.  Local well‐posedness of nonlinear dispersive equations on modulation spaces , 2007, 0704.0833.

[43]  Divyang G. Bhimani The Nonlinear Heat equations with fractional: Laplacian $\&$ harmonic oscillator in modulation spaces , 2019 .

[44]  Holger Rauhut Wiener Amalgam Spaces with respect to Quasi-Banach Spaces , 2005 .

[45]  Zhao Li-feng,et al.  Isometric decomposition operators, function spaces Ep,qλ and applications to nonlinear evolution equations , 2006 .

[46]  'Arp'ad B'enyi,et al.  On the Probabilistic Cauchy Theory for Nonlinear Dispersive PDEs , 2018, Landscapes of Time-Frequency Analysis.