The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome

Following birth, the breast-fed infant gastrointestinal tract is rapidly colonized by a microbial consortium often dominated by bifidobacteria. Accordingly, the complete genome sequence of Bifidobacterium longum subsp. infantis ATCC15697 reflects a competitive nutrient-utilization strategy targeting milk-borne molecules which lack a nutritive value to the neonate. Several chromosomal loci reflect potential adaptation to the infant host including a 43 kbp cluster encoding catabolic genes, extracellular solute binding proteins and permeases predicted to be active on milk oligosaccharides. An examination of in vivo metabolism has detected the hallmarks of milk oligosaccharide utilization via the central fermentative pathway using metabolomic and proteomic approaches. Finally, conservation of gene clusters in multiple isolates corroborates the genomic mechanism underlying milk utilization for this infant-associated phylotype.

[1]  I-Min A. Chen,et al.  The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata , 2007, Nucleic Acids Res..

[2]  G. Klein International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of Bifidobacterium, Lactobacillus and related organisms , 2009 .

[3]  B. Biavati,et al.  Proposal to reclassify the three biotypes of Bifidobacterium longum as three subspecies: Bifidobacterium longum subsp. longum subsp. nov., Bifidobacterium longum subsp. infantis comb. nov. and Bifidobacterium longum subsp. suis comb. nov. , 2008, International journal of systematic and evolutionary microbiology.

[4]  C. Lebrilla,et al.  Daily variations in oligosaccharides of human milk determined by microfluidic chips and mass spectrometry. , 2008, Journal of agricultural and food chemistry.

[5]  Nikos Kyrpides,et al.  The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata , 2007, Nucleic Acids Res..

[6]  I-Min A. Chen,et al.  The integrated microbial genomes (IMG) system in 2007: data content and analysis tool extensions , 2007, Nucleic Acids Res..

[7]  Ju-Hoon Lee,et al.  Comparative genomic analysis of the gut bacterium Bifidobacterium longum reveals loci susceptible to deletion during pure culture growth , 2008, BMC Genomics.

[8]  C. Lebrilla,et al.  Glycoprofiling of bifidobacterial consumption of human milk oligosaccharides demonstrates strain specific, preferential consumption of small chain glycans secreted in early human lactation. , 2007, Journal of agricultural and food chemistry.

[9]  Hiroshi Mori,et al.  Comparative Metagenomics Revealed Commonly Enriched Gene Sets in Human Gut Microbiomes , 2007, DNA research : an international journal for rapid publication of reports on genes and genomes.

[10]  M. Nishimoto,et al.  Identification of N-Acetylhexosamine 1-Kinase in the Complete Lacto-N-Biose I/Galacto-N-Biose Metabolic Pathway in Bifidobacterium longum , 2007, Applied and Environmental Microbiology.

[11]  M. Nei,et al.  MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. , 2007, Molecular biology and evolution.

[12]  Daniel B. DiGiulio,et al.  Development of the Human Infant Intestinal Microbiota , 2007, PLoS biology.

[13]  G. Klein International Committee on Systematics of Prokaryotes; Subcommittee on the taxonomy of Bifidobacterium, Lactobacillus and related organisms : Minutes of the meetings, 30 August and 1 September 2006, Bologna, Italy , 2007 .

[14]  M. Nishimoto,et al.  The complete lacto-N-biose I / galacto-N-biose metabolic pathway in 1 Bifidobacterium longum : identification of N-acetylhexosamine 1-kinase * 2 3 , 2007 .

[15]  M. Ventura,et al.  Analysis of bifidobacterial evolution using a multilocus approach. , 2006, International journal of systematic and evolutionary microbiology.

[16]  Luke E. Ulrich,et al.  Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility , 2006, Proceedings of the National Academy of Sciences.

[17]  Rudolf Grimm,et al.  A strategy for annotating the human milk glycome. , 2006, Journal of agricultural and food chemistry.

[18]  Feng Gao,et al.  GC-Profile: a web-based tool for visualizing and analyzing the variation of GC content in genomic sequences , 2006, Nucleic Acids Res..

[19]  M. Affolter,et al.  A Serpin from the Gut Bacterium Bifidobacterium longum Inhibits Eukaryotic Elastase-like Serine Proteases* , 2006, Journal of Biological Chemistry.

[20]  C. Lebrilla,et al.  In Vitro Fermentation of Breast Milk Oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri , 2006, Applied and Environmental Microbiology.

[21]  Robert Barber,et al.  Prophage Finder: A Prophage Loci Prediction Tool for Prokaryotic Genome Sequences , 2006, Silico Biol..

[22]  M. Kleerebezem,et al.  Comparative analysis of proteins with a mucus-binding domain found exclusively in lactic acid bacteria. , 2006, Microbiology.

[23]  Carsten Damm,et al.  Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models , 2006, BMC Bioinformatics.

[24]  T. Klaenhammer,et al.  Functional Analysis of Putative Adhesion Factors in Lactobacillus acidophilus NCFM , 2005, Applied and Environmental Microbiology.

[25]  F. Shanahan,et al.  Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. , 2005, Gastroenterology.

[26]  K. Konstantinidis,et al.  Genomic insights that advance the species definition for prokaryotes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Luke E. Ulrich,et al.  One-component systems dominate signal transduction in prokaryotes. , 2005, Trends in microbiology.

[28]  N. Price Acylic sugar derivatives for GC/MS analysis of 13C-enrichment during carbohydrate metabolism. , 2004, Analytical chemistry.

[29]  E. Schweizer,et al.  Microbial Type I Fatty Acid Synthases (FAS): Major Players in a Network of Cellular FAS Systems , 2004, Microbiology and Molecular Biology Reviews.

[30]  Ruslan Medzhitov,et al.  Recognition of Commensal Microflora by Toll-Like Receptors Is Required for Intestinal Homeostasis , 2004, Cell.

[31]  A. Margolles,et al.  Effect of the adaptation to high bile salts concentrations on glycosidic activity, survival at low PH and cross-resistance to bile salts in Bifidobacterium. , 2004, International journal of food microbiology.

[32]  H. Pakrasi,et al.  Investigation of the Functional Role of Ctp Proteins in the Cyanobacterium Synechocystis sp. PCC 6803 , 2002, Microbiology.

[33]  W. D. de Vos,et al.  Development of bacterial and bifidobacterial communities in feces of newborn babies. , 2003, Anaerobe.

[34]  Lynn K. Carmichael,et al.  A Genomic View of the Human-Bacteroides thetaiotaomicron Symbiosis , 2003, Science.

[35]  E. Mauceli,et al.  Whole-genome sequence assembly for mammalian genomes: Arachne 2. , 2003, Genome research.

[36]  Jeffrey I. Gordon,et al.  Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[37]  H. Hayashi,et al.  Unification of Bifidobacterium infantis and Bifidobacterium suis as Bifidobacterium longum. , 2002, International journal of systematic and evolutionary microbiology.

[38]  Peer Bork,et al.  The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  J. Claverys,et al.  Homologous recombination at the border: Insertion-deletions and the trapping of foreign DNA in Streptococcus pneumoniae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[40]  M. Raida,et al.  Human milk provides peptides highly stimulating the growth of bifidobacteria. , 2002, European journal of biochemistry.

[41]  H. Jonsson,et al.  A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. , 2002, Microbiology.

[42]  W. D. de Vos,et al.  Molecular Monitoring of Succession of Bacterial Communities in Human Neonates , 2002, Applied and Environmental Microbiology.

[43]  S. Madsen,et al.  Intra- and Extracellular β-Galactosidases fromBifidobacterium bifidum and B. infantis: Molecular Cloning, Heterologous Expression, and Comparative Characterization , 2001, Applied and Environmental Microbiology.

[44]  C. Desmarais,et al.  Automated finishing with autofinish. , 2001, Genome research.

[45]  G. Reuter The Lactobacillus and Bifidobacterium microflora of the human intestine: composition and succession. , 2001, Current issues in intestinal microbiology.

[46]  S. Walls,et al.  The Presence of a Cytochrome P450-like Protein in the Human Intestinal Micro ora Eubacterium aerofaciens , 2001 .

[47]  S. Walls,et al.  The Presence of a Cytochrome P450-like Protein in the Human Intestinal Microflora Eubacterium aerofaciens , 2001 .

[48]  S. Salzberg,et al.  Evidence for symmetric chromosomal inversions around the replication origin in bacteria , 2000, Genome Biology.

[49]  D. Brassart,et al.  Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity , 2000, Gut.

[50]  H. Harmsen,et al.  Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. , 2000, Journal of pediatric gastroenterology and nutrition.

[51]  P. Reeds,et al.  Nitrogen cycling in the gut. , 1998, Annual review of nutrition.

[52]  G. Sawatzki,et al.  Influence of two infant formulas and human milk on the development of the faecal flora in newborn infants , 1995, Acta paediatrica.

[53]  B. Biavati,et al.  Degradation of complex carbohydrates by Bifidobacterium spp. , 1994, International journal of food microbiology.

[54]  M. Hediger,et al.  Cloning and characterization of the vasopressin-regulated urea transporter , 1993, Nature.

[55]  S. Donovan,et al.  Non‐Protein Nitrogen and True Protein in Infant Formulas , 1989, Acta paediatrica Scandinavica.

[56]  R. B. Hespell,et al.  Fermentation of xylans by Butyrivibrio fibrisolvens and other ruminal bacteria , 1987, Applied and environmental microbiology.

[57]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[58]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[59]  C. Raetz,et al.  The biosynthesis of gram-negative endotoxin. Formation of lipid A disaccharides from monosaccharide precursors in extracts of Escherichia coli. , 1984, The Journal of biological chemistry.

[60]  R. Tanaka,et al.  Improved medium for selective isolation and enumeration of Bifidobacterium , 1980, Applied and environmental microbiology.

[61]  Y. Benno,et al.  Urease-producing species of intestinal anaerobes and their activities , 1979, Applied and environmental microbiology.

[62]  W. J. Dyer,et al.  A rapid method of total lipid extraction and purification. , 1959, Canadian journal of biochemistry and physiology.

[63]  Linhares Es,et al.  Evolution of the Kober test for determination of estrogens , 1954 .

[64]  F. Zilliken,et al.  Bifidus factor. II. Its occurrence in milk from different species and in other natural products. , 1954, Archives of biochemistry and biophysics.