The spatial arrangement of random Voronoi polygons

Abstract A Monte Carlo procedure is used to derive simple models which describe some of the characteristics of the spatial arrangement of individual Voronoi polygons within a tesselation. The procedure uses a new approach and algorithm for the generation of such polygons.

[1]  I. K. Crain,et al.  Statistical Analysis of Geotectonics , 1976 .

[2]  A. Lachenbruch Mechanics of Thermal Contraction Cracks and Ice-Wedge Polygons in Permafrost , 1962 .

[3]  Denis Weaire,et al.  Some remarks on the arrangement of grains in a polycrystal , 1974 .

[4]  R Collins,et al.  A geometrical sum rule for two-dimensional fluid correlation functions , 1968 .

[5]  H. Honda Description of cellular patterns by Dirichlet domains: the two-dimensional case. , 1978, Journal of theoretical biology.

[6]  D. A Aboav,et al.  The arrangement of grains in a polycrystal , 1970 .

[7]  M. Tanemura,et al.  Geometrical models of territory. I. Models for synchronous and asynchronous settlement of territories. , 1980, Journal of theoretical biology.

[8]  James B. Anderson,et al.  Topological properties of random crack networks , 1976 .

[9]  C. Cannings,et al.  On the adjustment of the sex ratio and the gregarious behavior of animal populations. , 1975, Journal of theoretical biology.

[10]  E. Gilbert Random Subdivisions of Space into Crystals , 1962 .

[11]  Herbert Solomon,et al.  APPROXIMATIONS TO DENSITIES IN GEOMETRIC PROBABILITY , 1980 .

[12]  Ian K. Crain,et al.  The Monte-Carlo generation of random polygons , 1978 .

[13]  I. J. Smalley,et al.  Contraction Crack Networks in Basalt Flows , 1966, Geological Magazine.

[14]  W. Hamilton Geometry for the selfish herd. , 1971, Journal of theoretical biology.

[15]  T. Kiang RANDOM FRAGMENTATION IN TWO AND THREE DIMENSIONS. , 1966 .

[16]  Richard Cowan,et al.  The Use of the Ergodic Theorems in Random Geometry , 1978 .

[17]  B. N. Boots PACKING POLYGONS: SOME EMPIRICAL EVIDENCE , 1980 .

[18]  Arthur Getis,et al.  Models of spatial processes : an approach to the study of point, line, and area patterns , 1979 .

[19]  Tohru Ogawa,et al.  Geometrical Considerations on Hard Core Problems , 1974 .

[20]  C Noble Beard,et al.  QUANTITATIVE STUDY OF COLUMNAR JOINTING , 1959 .

[21]  D. A. Aboav,et al.  The arrangement of cells in a net , 1980 .

[22]  B. Boots,et al.  Some Models of the Random Subdivision of Space , 1973 .

[23]  B. Boots,et al.  The arrangement of cells in “random” networks☆ , 1982 .

[24]  Cyril Stanley Smith,et al.  The Shape of Things , 2019 .

[25]  U. R. Evans The laws of expanding circles and spheres in relation to the lateral growth of surface films and the grain-size of metals , 1945 .

[26]  Denis Weaire,et al.  Theory of the arrangement of cells in a network , 1981 .

[27]  Robin Sibson,et al.  Computing Dirichlet Tessellations in the Plane , 1978, Comput. J..

[28]  Kanti V. Mardia,et al.  Analysis of Central Place Theory. , 1978 .

[29]  Barry Boots,et al.  SOME OBSERVATIONS ON THE STRUCTURE OF SOCIO-ECONOMIC CELLULAR NETWORKS , 1975 .