Labelled splitting

We define a superposition calculus with explicit splitting on the basis of labelled clauses. For the first time we show a superposition calculus with an explicit non-chronological backtracking rule sound and complete. The new backtracking rule advances backtracking with branch condensing known from SPASS. An experimental evaluation of an implementation of the new rule shows that it improves considerably on the previous SPASS splitting implementation. Finally, we discuss the relationship between labelled first-order splitting and DPLL style splitting with intelligent backtracking and clause learning.

[1]  Harald Ganzinger,et al.  Superposition with Simplification as a Desision Procedure for the Monadic Class with Equality , 1993, Kurt Gödel Colloquium.

[2]  Peter Baumgartner,et al.  The model evolution calculus as a first-order DPLL method , 2008, Artif. Intell..

[3]  Niklas Sörensson,et al.  An Extensible SAT-solver , 2003, SAT.

[4]  Albert Oliveras,et al.  Decision Procedures for SAT, SAT Modulo Theories and Beyond. The BarcelogicTools , 2005, LPAR.

[5]  Geoff Sutcliffe,et al.  The TPTP Problem Library , 1994, Journal of Automated Reasoning.

[6]  Sharad Malik,et al.  Efficient conflict driven learning in a Boolean satisfiability solver , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[7]  G. S. Tseitin On the Complexity of Derivation in Propositional Calculus , 1983 .

[8]  Christoph Weidenbach,et al.  System Description: SpassVersion 3.0 , 2007, CADE.

[9]  Christoph Goller,et al.  Controlled integration of the cut rule into connection tableau calculi , 2004, Journal of Automated Reasoning.

[10]  Armando Tacchella,et al.  Theory and Applications of Satisfiability Testing , 2003, Lecture Notes in Computer Science.

[11]  Geoff Sutcliffe,et al.  Logic for Programming, Artificial Intelligence, and Reasoning, 12th International Conference, LPAR 2005, Montego Bay, Jamaica, December 2-6, 2005, Proceedings , 2005, LPAR.

[12]  Christoph Weidenbach,et al.  SPASS & FLOTTER Version 0.42 , 1996, CADE.

[13]  Georg Gottlob,et al.  Computational Logic and Proof Theory: Third Kurt Godel Colloquium, Kgc'93, Brno, Czech Republic, August 24-27, 1993 Proceedings , 1993 .

[14]  Jean H. Gallier,et al.  Linear-Time Algorithms for Testing the Satisfiability of Propositional Horn Formulae , 1984, J. Log. Program..

[15]  Andrei Voronkov,et al.  Splitting Without Backtracking , 2001, IJCAI.

[16]  Christian G. Fermüller,et al.  Resolution Decision Procedures , 2001, Handbook of Automated Reasoning.

[17]  Christoph Weidenbach,et al.  Labelled Splitting , 2008, IJCAR.

[18]  Hans de Nivelle Splitting Through New Proposition Symbols , 2001, LPAR.

[19]  Tobias Nipkow,et al.  Term rewriting and all that , 1998 .

[20]  Joao Marques-Silva,et al.  GRASP: A Search Algorithm for Propositional Satisfiability , 1999, IEEE Trans. Computers.

[21]  Christoph Weidenbach,et al.  Labelled Clauses , 2007, CADE.

[22]  Christoph Weidenbach,et al.  Combining Superposition, Sorts and Splitting , 2001, Handbook of Automated Reasoning.

[23]  Albert Rubio,et al.  Paramodulation-Based Theorem Proving , 2001, Handbook of Automated Reasoning.

[24]  Reiner Hähnle,et al.  Tableaux and Related Methods , 2001, Handbook of Automated Reasoning.

[25]  Cesare Tinelli,et al.  Solving SAT and SAT Modulo Theories: From an abstract Davis--Putnam--Logemann--Loveland procedure to DPLL(T) , 2006, JACM.

[26]  Harald Ganzinger,et al.  Resolution Theorem Proving , 2001, Handbook of Automated Reasoning.

[27]  Henry A. Kautz,et al.  Understanding the power of clause learning , 2003, IJCAI 2003.

[28]  Eugene Goldberg,et al.  BerkMin: A Fast and Robust Sat-Solver , 2002, Discret. Appl. Math..

[29]  Christoph Weidenbach,et al.  Computing Small Clause Normal Forms , 2001, Handbook of Automated Reasoning.

[30]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[31]  Christoph Weidenbach,et al.  Superposition for Finite Domains , 2007 .