Improved set of 2 in 1 ( co-) localisation and FRET vectors 2 3 Corresponding

Running head: 1 Improved set of 2in1 (co-) localisation and FRET vectors 2 3 Corresponding author: 4 Dr. Christopher Grefen 5 Abteilung Entwicklungsgenetik 6 Zentrum für Molekularbiologie der Pflanzen (ZMBP) 7 Auf der Morgenstelle 32 8 72076 Tübingen 9 Germany 10 11 Telephone: 0049-7071-29-73230 12 Email: christopher.grefen@uni-tuebingen.de 13 14 Breakthrough technologies 15 Plant Physiology Preview. Published on May 13, 2015, as DOI:10.1104/pp.15.00533

[1]  Ben Zhang,et al.  Binding of SEC11 Indicates Its Role in SNARE Recycling after Vesicle Fusion and Identifies Two Pathways for Vesicular Traffic to the Plasma Membrane[OPEN] , 2015, Plant Cell.

[2]  D. Inzé,et al.  Arabidopsis SNAREs SYP61 and SYP121 Coordinate the Trafficking of Plasma Membrane Aquaporin PIP2;7 to Modulate the Cell Membrane Water Permeability[W] , 2014, Plant Cell.

[3]  G. De Jaeger,et al.  The Phragmoplast-Orienting Kinesin-12 Class Proteins Translate the Positional Information of the Preprophase Band to Establish the Cortical Division Zone in Arabidopsis thaliana[C][W] , 2014, Plant Cell.

[4]  A. Bader,et al.  FRET-FLIM applications in plant systems , 2014, Protoplasma.

[5]  E. Rees,et al.  A quantitative protocol for intensity-based live cell FRET imaging. , 2014, Methods in molecular biology.

[6]  K. Harter,et al.  Fluorescence microscopy. , 2014, Methods in molecular biology.

[7]  M. Blatt,et al.  Applications of fluorescent marker proteins in plant cell biology. , 2014, Methods in molecular biology.

[8]  J. Borst,et al.  Global analysis of FRET-FLIM data in live plant cells. , 2014, Methods in molecular biology.

[9]  B. Barisas,et al.  Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells , 2013, Front. Plant Sci..

[10]  Fabian Kellermeier,et al.  Histone Deacetylase Complex1 Expression Level Titrates Plant Growth and Abscisic Acid Sensitivity in Arabidopsis[C][W][OPEN] , 2013, Plant Cell.

[11]  A. Depicker,et al.  T-DNA transfer and T-DNA integration efficiencies upon Arabidopsis thaliana root explant cocultivation and floral dip transformation , 2013, Planta.

[12]  Alexander M. Jones,et al.  In vivo biochemistry: applications for small molecule biosensors in plant biology. , 2013, Current opinion in plant biology.

[13]  G. Jürgens,et al.  SNARE complexes of different composition jointly mediate membrane fusion in Arabidopsis cytokinesis , 2013, Molecular biology of the cell.

[14]  Rucha Karnik,et al.  Arabidopsis Sec1/Munc18 Protein SEC11 Is a Competitive and Dynamic Modulator of SNARE Binding and SYP121-Dependent Vesicle Traffic[W][OA] , 2013, Plant Cell.

[15]  Abhijit Karnik,et al.  SDM-Assist software to design site-directed mutagenesis primers introducing “silent” restriction sites , 2013, BMC Bioinformatics.

[16]  Christopher Grefen,et al.  A 2in1 cloning system enables ratiometric bimolecular fluorescence complementation (rBiFC). , 2012, BioTechniques.

[17]  K. Harter,et al.  Screening for in planta protein-protein interactions combining bimolecular fluorescence complementation with flow cytometry , 2012, Plant Methods.

[18]  G. Drummen,et al.  Advanced Fluorescence Microscopy Techniques—FRAP, FLIP, FLAP, FRET and FLIM , 2012, Molecules.

[19]  K. Harter,et al.  Spectro-microscopy of living plant cells. , 2012, Molecular plant.

[20]  Andreas Hecker,et al.  Alanine Zipper-Like Coiled-Coil Domains Are Necessary for Homotypic Dimerization of Plant GAGA-Factors in the Nucleus and Nucleolus , 2011, PloS one.

[21]  J. Kudla,et al.  A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. , 2010, The Plant journal : for cell and molecular biology.

[22]  Michael W. Davidson,et al.  The fluorescent protein palette: tools for cellular imaging. , 2009, Chemical Society reviews.

[23]  M. Zimmer GFP: from jellyfish to the Nobel prize and beyond. , 2009, Chemical Society reviews.

[24]  Robert M. Clegg,et al.  Chapter 1 Förster resonance energy transfer—FRET what is it, why do it, and how it's done , 2009 .

[25]  J. Goedhart,et al.  Visible fluorescent proteins for FRET , 2009 .

[26]  M. Blatt,et al.  SNAREs--molecular governors in signalling and development. , 2008, Current opinion in plant biology.

[27]  P. Schulze-Lefert,et al.  Activity Determinants and Functional Specialization of Arabidopsis PEN1 Syntaxin in Innate Immunity* , 2008, Journal of Biological Chemistry.

[28]  L. Gissot,et al.  Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings. , 2008, The Plant journal : for cell and molecular biology.

[29]  Yasushi Okamura,et al.  Improving membrane voltage measurements using FRET with new fluorescent proteins , 2008, Nature Methods.

[30]  K. Harter,et al.  Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members. , 2008, Molecular plant.

[31]  G. Jürgens,et al.  Co-option of a default secretory pathway for plant immune responses , 2008, Nature.

[32]  R. Panstruga,et al.  SNARE-ware: the role of SNARE-domain proteins in plant biology. , 2007, Annual review of cell and developmental biology.

[33]  M. Blatt,et al.  Selective targeting of plasma membrane and tonoplast traffic by inhibitory (dominant-negative) SNARE fragments. , 2007, The Plant journal : for cell and molecular biology.

[34]  Joachim Goedhart,et al.  Bright monomeric red fluorescent protein with an extended fluorescence lifetime , 2007, Nature Methods.

[35]  C. Hawes,et al.  Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants , 2006, Nature Protocols.

[36]  Marc Tramier,et al.  Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells , 2006, Microscopy research and technique.

[37]  Nathan C Shaner,et al.  A guide to choosing fluorescent proteins , 2005, Nature Methods.

[38]  R. Tsien,et al.  Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein , 2004, Nature Biotechnology.

[39]  A. Nakano,et al.  Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. , 2004, Cell structure and function.

[40]  C. Koncz,et al.  The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector , 1986, Molecular and General Genetics MGG.

[41]  G. Angenent,et al.  Low frequency of T‐DNA based activation tagging in Arabidopsis is correlated with methylation of CaMV 35S enhancer sequences , 2003, FEBS letters.

[42]  Petra Schwille,et al.  Triple FRET: a tool for studying long-range molecular interactions. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[43]  R. Tsien,et al.  Creating new fluorescent probes for cell biology , 2002, Nature Reviews Molecular Cell Biology.

[44]  R. Tsien,et al.  Partitioning of Lipid-Modified Monomeric GFPs into Membrane Microdomains of Live Cells , 2002, Science.

[45]  Takeharu Nagai,et al.  Shift anticipated in DNA microarray market , 2002, Nature Biotechnology.

[46]  G. Jürgens,et al.  Functional characterization of the KNOLLE-interacting t-SNARE AtSNAP33 and its role in plant cytokinesis , 2001, The Journal of cell biology.

[47]  N. Raikhel,et al.  The pre-vacuolar t-SNARE AtPEP12p forms a 20S complex that dissociates in the presence of ATP. , 1999, The Plant journal : for cell and molecular biology.

[48]  M. Blatt,et al.  A tobacco syntaxin with a role in hormonal control of guard cell ion channels. , 1999, Science.

[49]  S. Clough,et al.  Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. , 1998, The Plant journal : for cell and molecular biology.

[50]  B. Herman,et al.  Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. , 1998, Biophysical journal.

[51]  C. Kunz,et al.  Silencing of transgenes introduced into leaves by agroinfiltration: a simple, rapid method for investigating sequence requirements for gene silencing , 1997, Molecular and General Genetics MGG.

[52]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[53]  S. Kain,et al.  Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein. , 1996, Nucleic acids research.

[54]  M. Couturier,et al.  Positive-selection vectors using the F plasmid ccdB killer gene. , 1994, Gene.