Thermal and flammability properties of polyethersulfone/halloysite nanocomposites prepared by melt compounding

This paper presents a study of polyethersulfone (PES)/halloysite nanotube (HNTs) nanocomposites prepared by melt compounding either through a simple extrusion process or via a water-assisted extrusion procedure. Scanning and transmission electron microscopy techniques are combined with rheological measurements to assess the influence of polymer end groups (eCl or eOH) and water injection on the HNTs dispersion state. A morphological transition form microcomposite to nanocomposite is achieved when replacing eCl chain ends of PES by eOH groups, especially when water is injected during processing. By a combination of Soxhlet extraction and thermogravimetric analysis, we show that some PES(OH) chains are covalently bonded onto the aluminosilicate surface during extrusion. A mechanism describing the physico-chemical action of water is presented. The best system in terms of clay dispersion has been retained to characterize PES-HNTs nanocomposites with respect to their thermo-mechanical, thermal and fire (mass loss calorimetry and UL-94) properties. Dynamic mechanical analysis shows a significant enhancement in the storage modulus of halloysite-based nanocomposites when compared to the unfilled matrix. The improved thermal and thermo-oxidative stability of PES in presence of HNTs is mainly attributed to the labyrinth effect provided by individually dispersed nanotubes, which is reinforced during the decomposition process by the formation of a protective charred ceramic surface layer. The mechanism of action of HNTs for fire retardancy of PES presumably arises from a synergistic effect between physical (i.e. ceramic-like structure formation and mechanical reinforcement of the intumescent char) and chemical (i.e. charring promotion) processes taking place in the condensed phase. According to this study, the straightforward and cost-effective melt compounding route could pave the way for future development of high-performance nanoscale polymeric materials combining enhanced thermal properties and excellent flame retardant behaviour.

[1]  J. E. Mark,et al.  Synthesis, structure, mechanical properties, and thermal stability of some polysulfone/organoclay nanocomposites , 2001 .

[2]  Wei Zhang,et al.  High‐resolution thermogravimetry of polyethersulfone chips in four atmospheres , 2003 .

[3]  J. Bicerano,et al.  Polymeric Nanocomposites for Automotive Applications , 2000 .

[4]  V. Dravid,et al.  Effect of spatial confinement on the glass-transition temperature of patterned polymer nanostructures. , 2007, Nano letters.

[5]  F. Beyer,et al.  Mechanical response and rheological properties of polycarbonate layered-silicate nanocomposites , 2004 .

[6]  B. Singh Why Does Halloysite Roll?—A New Model , 1996 .

[7]  R. N. Walters,et al.  Investigation of the thermal decomposition and flammability of PEEK and its carbon and glass-fibre composites , 2011 .

[8]  H. Mark,et al.  Encyclopedia of polymer science and engineering , 1985 .

[9]  Kalappa Prashantha,et al.  Mechanical behaviour and essential work of fracture of halloysite nanotubes filled polyamide 6 nanocomposites , 2011 .

[10]  B. Guo,et al.  Natural inorganic nanotubes reinforced epoxy resin nanocomposites , 2008 .

[11]  A. Okada,et al.  Preparation and Mechanical Properties of Polypropylene−Clay Hybrids , 1997 .

[12]  S. Bourbigot,et al.  Fire retardant polymers : recent developments and opportunities , 2007 .

[13]  A. Stec,et al.  Fire retardant effects of polymer nanocomposites. , 2009, Journal of nanoscience and nanotechnology.

[14]  M. Sclavons,et al.  Polymer-based nanocomposites: Overview, applications and perspectives , 2007 .

[15]  P. Godard,et al.  Water-assisted extrusion of polypropylene/clay nanocomposites: A comprehensive study , 2011 .

[16]  R. Muller,et al.  Linear viscoelastic behavior of some incompatible polymer blends in the melt. Interpretation of data with a model of emulsion of viscoelastic liquids , 1993 .

[17]  A. Fina,et al.  In-depth radiative heat transmittance through polypropylene/nanoclay composites , 2013 .

[18]  P. Dubois,et al.  Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials , 2000 .

[19]  D. Marney,et al.  The suitability of halloysite nanotubes as a fire retardant for nylon 6 , 2008 .

[20]  Constantine D. Papaspyrides,et al.  A review on polymer–layered silicate nanocomposites , 2008 .

[21]  Aroon Shenoy,et al.  Rheology of Filled Polymer Systems , 1999 .

[22]  R. Singh,et al.  An overview on the degradability of polymer nanocomposites , 2005 .

[23]  M. Sclavons,et al.  Structure-property relationships in polyamide 12/halloysite nanotube nanocomposites , 2011 .

[24]  Meng Feng,et al.  Thermal stability and flammability of polypropylene/montmorillonite composites , 2004 .

[25]  S. Radhakrishnan,et al.  Polyethersulfone-expanded graphite nanocomposites: Charge transport and impedance characteristics , 2010 .

[26]  U. A. Handge,et al.  Composites of polyamide 6 and silicate nanotubes of the mineral halloysite: Influence of molecular weight on thermal, mechanical and rheological properties , 2010 .

[27]  K. Ninan,et al.  Synthesis and characterization of poly(ether sulfone) and poly(ether sulfone ketone) copolymers , 1999 .

[28]  Roland Keunings,et al.  Evaluation of Reptation Models for Predicting the Linear Viscoelastic Properties of Entangled Linear Polymers , 2002 .

[29]  Jeffrey W. Gilman,et al.  Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites , 1999 .

[30]  R. E. Smallman,et al.  An assessment of high voltage electron microscopy (HVEM). An invited review , 1977 .

[31]  M. Ulbricht,et al.  Characteristics, performance and stability of polyethersulfone ultrafiltration membranes prepared by phase separation method using different macromolecular additives , 2009 .

[32]  R. N. Johnson,et al.  Poly(Aryl ethers) by nucleophilic aromatic substitution. II. Thermal stability , 1967 .

[33]  P. Dubois,et al.  Polylactide (PLA)—Halloysite Nanocomposites: Production, Morphology and Key-Properties , 2012, Journal of Polymers and the Environment.

[34]  G. T. Lim,et al.  Novel polyamide nanocomposites based on silicate nanotubes of the mineral halloysite , 2009 .

[35]  J. Seo,et al.  Pervaporation behavior of asymmetric sulfonated polysulfones and sulfonated poly(ether sulfone) membranes , 2000 .

[36]  S. Bourbigot,et al.  Water-assisted extrusion as a novel processing route to prepare polypropylene/halloysite nanotube nanocomposites: Structure and properties , 2011 .

[37]  Yatao Zhang,et al.  Preparation and Characterization of PES/HNTs Hybrid Ultrafiltration Membranes , 2012 .

[38]  B. Nysten,et al.  Elastic modulus of halloysite nanotubes , 2013, Nanotechnology.

[39]  Serge Bourbigot,et al.  Kinetic analysis of the thermal degradation of polystyrene–montmorillonite nanocomposite , 2004 .

[40]  C. A. Wilkie,et al.  The Relationship Between Thermal Degradation Behavior of Polymer and the Fire Retardancy of Polymer/Clay Nanocomposites , 2005 .

[41]  T. Richard Hull,et al.  Sources of variability in fire test data: A case study on poly(aryl ether ether ketone) (PEEK) , 2012 .

[42]  René Delobel,et al.  Thermal Behaviours of Ammonium Polyphosphate-Pentaerythritol and Ammonium Pyrophosphate-Pentaerythritol Intumescent Additives in Polypropylene Formulations , 1990 .

[43]  Bernhard Schartel,et al.  Development of fire‐retarded materials—Interpretation of cone calorimeter data , 2007 .

[44]  B. Guo,et al.  Structure and Performance of Polyamide 6/Halloysite Nanotubes Nanocomposites , 2009 .

[45]  M. Xue,et al.  BaTiO3–polyethersulfone nanocomposites with high dielectric constant and excellent thermal stability , 2011 .

[46]  W. W. Wright,et al.  A Comparative Study of the Thermal Stability and Mechanism of Degradation of Poly(arylene sulphones) , 1986 .

[47]  B. Guo,et al.  Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene) , 2006 .

[48]  Kalappa Prashantha,et al.  Poly(lactic acid)/halloysite nanotubes nanocomposites: Structure, thermal, and mechanical properties as a function of halloysite treatment , 2012 .

[49]  J. Soulestin,et al.  One-step water-assisted melt-compounding of polyamide 6/pristine clay nanocomposites: An efficient way to prevent matrix degradation , 2011 .

[50]  Ajith James Jose,et al.  Development and characterization of organo fluorohectorite polyethersulfone nanocomposites for high performance applications , 2013 .

[51]  H. Fischer Polymer nanocomposites: from fundamental research to specific applications , 2003 .

[52]  S. Bourbigot,et al.  Towards scalable production of polyamide 12/halloysite nanocomposites via water‐assisted extrusion: mechanical modeling, thermal and fire properties , 2014 .

[53]  K. Mauritz,et al.  Polyethersulfone–[silicon oxide] hybrid materials via in situ sol–gel reactions for tetra-alkoxysilanes , 1998 .

[54]  M. Doğan,et al.  The role of nanoparticle geometry in flame retardancy of polylactide nanocomposites containing aluminium phosphinate , 2012 .

[55]  S. Homaeigohar,et al.  Polyethersulfone electrospun nanofibrous composite membrane for liquid filtration , 2010 .

[56]  B. Schartel,et al.  Mechanical, thermal, and fire behavior of bisphenol a polycarbonate/multiwall carbon nanotube nanocomposites , 2008 .

[57]  John-Chang Chen,et al.  The curing reaction of poly(ether‐sulfone)‐modified epoxy resin , 1995 .

[58]  H. F. Shurvell,et al.  Raman Microprobe Spectroscopy of Halloysite , 1997 .

[59]  G. Beyer Nanocomposites: a new class of flame retardants for polymers , 2002 .

[60]  Zhengping Fang,et al.  Effects of carbon nanotubes on the thermal stability and flame retardancy of intumescent flame-retarded polypropylene , 2011 .

[61]  B. Guo,et al.  Morphology and properties of halloysite nanotubes reinforced polypropylene nanocomposites , 2008 .

[62]  Shih-Hsien Yang,et al.  Surface characterization and barrier properties of plasma-modified polyethersulfone/layered silicate nanocomposites , 2006 .

[63]  M. Sclavons,et al.  Nanocomposites from untreated clay: A myth? , 2006 .

[64]  Constantine D. Papaspyrides,et al.  Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy , 2010 .

[65]  Kathryn M. Butler,et al.  Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites , 2004 .

[66]  Takashi Kashiwagi,et al.  Flame retardant mechanism of polyamide 6–clay nanocomposites ☆ , 2004 .

[67]  S. Iannace,et al.  Nanofilled polyethersulfone as matrix for continuous glass fibers composites: Mechanical properties and solvent resistance† , 2010 .

[68]  G. Camino,et al.  Ignition mechanisms in polymers and polymer nanocomposites , 2011 .

[69]  G. Camino,et al.  Effect of matrix features on polypropylene layered silicate nanocomposites , 2005 .

[70]  B. Guo,et al.  Reinforcing and Flame-Retardant Effects of Halloysite Nanotubes on LLDPE , 2009 .