On the structure of strange non-chaotic attractors in pinched skew products
暂无分享,去创建一个
[1] T. Morrison,et al. Dynamical Systems , 2021, Nature.
[2] V. Oseledets,et al. An example of a strange nonchaotic attractor , 1996 .
[3] J. Stark. Regularity of invariant graphs for forced systems , 1999, Ergodic Theory and Dynamical Systems.
[4] Paul Glendinning,et al. Global attractors of pinched skew products , 2002 .
[5] Rob Sturman,et al. Semi-uniform ergodic theorems and applications to forced systems , 2000 .
[6] Rossiĭskai︠a︡ akademii︠a︡ nauk,et al. Functional analysis and its applications , 1967 .
[7] Ioannis G. Kevrekidis,et al. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering: Editorial , 2005 .
[8] Tobias Jäger,et al. Quasiperiodically forced interval maps with negative Schwarzian derivative , 2003 .
[9] 阿部 浩一,et al. Fundamenta Mathematicae私抄 : 退任の辞に代えて , 1987 .
[10] J. Zukas. Introduction to the Modern Theory of Dynamical Systems , 1998 .
[11] J. Yorke,et al. Strange attractors that are not chaotic , 1984 .
[12] Gerhard Keller. A note on strange nonchaotic attractors , 1996 .
[13] M. R. Herman. Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2 , 1983 .
[14] Transitive sets for quasi-periodically forced monotone maps , 2003 .
[15] J. Guckenheimer. ONE‐DIMENSIONAL DYNAMICS * , 1980 .
[16] Ramakrishna Ramaswamy,et al. Strange Nonchaotic attractors , 2001, Int. J. Bifurc. Chaos.