A note on stable perturbations of Moore–Penrose inverses

SUMMARY Perturbation bounds for Moore–Penrose inverses of rectangular matrices play a significant role in the perturbation analysis for linear least squares problems. In this note, we derive a sharp upper bound for Moore–Penrose inverses, which is better than a well known existing one. Copyright © 2011 John Wiley & Sons, Ltd.

[1]  G. Stewart On the Continuity of the Generalized Inverse , 1969 .

[2]  P. Wedin Perturbation theory for pseudo-inverses , 1973 .

[3]  Yimin Wei,et al.  On Frobenius normwise condition numbers for Moore–Penrose inverse and linear least‐squares problems , 2007, Numer. Linear Algebra Appl..

[4]  Musheng Wei,et al.  Perturbation analysis of the least squares solution in Hilbert spaces , 1996 .

[5]  Yimin Wei,et al.  On mixed and componentwise condition numbers for Moore-Penrose inverse and linear least squares problems , 2006, Math. Comput..

[6]  Guoliang Chen,et al.  Perturbation Analysis for the Operator EquationTx = bin Banach Spaces☆ , 1997 .

[7]  Serge Gratton,et al.  Using dual techniques to derive componentwise and mixed condition numbers for a linear function of a linear least squares solution , 2009 .

[8]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[9]  Guoliang Chen,et al.  Some equivalent conditions of stable perturbation of operators in Hilbert spaces , 2004, Appl. Math. Comput..

[10]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[11]  Serge Gratton,et al.  A Partial Condition Number for Linear Least Squares Problems , 2007, SIAM J. Matrix Anal. Appl..

[12]  G. Stewart On the Perturbation of Pseudo-Inverses, Projections and Linear Least Squares Problems , 1977 .

[13]  Julien Langou,et al.  Computing the conditioning of the components of a linear least-squares solution , 2009, Numer. Linear Algebra Appl..

[14]  Guoliang Chen,et al.  The expression of the generalized inverse of the perturbed operator under Type I perturbation in Hilbert spaces , 1998 .

[15]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[16]  James Demmel,et al.  Extra-Precise Iterative Refinement for Overdetermined Least Squares Problems , 2009, TOMS.

[17]  Yimin Wei,et al.  Perturbation bounds for constrained and weighted least squares problems , 2002 .