The Life Cycle of Ca2+ Ions in Dendritic Spines

[1]  P. Andersen,et al.  Possible mechanisms for long‐lasting potentiation of synaptic transmission in hippocampal slices from guinea‐pigs. , 1980, The Journal of physiology.

[2]  G. Lynch,et al.  Intracellular injections of EGTA block induction of hippocampal long-term potentiation , 1983, Nature.

[3]  L. Voronin,et al.  Long-term potentiation in the hippocampus , 1983, Neuroscience.

[4]  R. Llinás,et al.  Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. , 1985, Biophysical journal.

[5]  J. Lisman,et al.  A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[6]  William R. Holmes,et al.  Is the function of dendritic spines to concentrate calcium? , 1990, Brain Research.

[7]  J. Storm Potassium currents in hippocampal pyramidal cells. , 1990, Progress in brain research.

[8]  W. N. Ross,et al.  The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons , 1992, Nature.

[9]  W. N. Ross,et al.  Calcium transients evoked by climbing fiber and parallel fiber synaptic inputs in guinea pig cerebellar Purkinje neurons. , 1992, Journal of neurophysiology.

[10]  M. Bear,et al.  Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Dimitri M. Kullmann,et al.  Ca2+ Entry via postsynaptic voltage-sensitive Ca2+ channels can transiently potentiate excitatory synaptic transmission in the hippocampus , 1992, Neuron.

[12]  E. Neher,et al.  Calcium gradients and buffers in bovine chromaffin cells. , 1992, The Journal of physiology.

[13]  R. Nicoll,et al.  Postsynaptic contribution to long-term potentiation revealed by the analysis of miniature synaptic currents , 1992, Nature.

[14]  R. Malenka,et al.  Temporal limits on the rise in postsynaptic calcium required for the induction of long-term potentiation , 1992, Neuron.

[15]  R. Malenka,et al.  Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus , 1992, Neuron.

[16]  D. Nicoll,et al.  Sodium-calcium exchange. , 1992, Current opinion in cell biology.

[17]  L. Stryer,et al.  Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. , 1992, Science.

[18]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[19]  C. Koch,et al.  The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  S. B. Kater,et al.  Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. , 1994, Annual review of neuroscience.

[21]  R. Malenka,et al.  Involvement of a calcineurin/ inhibitor-1 phosphatase cascade in hippocampal long-term depression , 1994, Nature.

[22]  WG Regehr,et al.  A quantitative analysis of presynaptic calcium dynamics that contribute to short-term enhancement , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  J. Connor,et al.  Micromolar Ca2+ transients in dendritic spines of hippocampal pyramidal neurons in brain slice , 1995, Neuron.

[24]  W. Denk,et al.  Dendritic spines as basic functional units of neuronal integration , 1995, Nature.

[25]  R. Nicoll,et al.  Ca2+ Signaling Requirements for Long-Term Depression in the Hippocampus , 1996, Neuron.

[26]  D W Tank,et al.  Direct Measurement of Coupling Between Dendritic Spines and Shafts , 1996, Science.

[27]  S. Baylor,et al.  The amplitude and time course of the myoplasmic free [Ca2+] transient in fast-twitch fibers of mouse muscle , 1996, The Journal of general physiology.

[28]  I. Llano,et al.  High endogenous calcium buffering in Purkinje cells from rat cerebellar slices. , 1996, The Journal of physiology.

[29]  B. Sakmann,et al.  Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. , 1996, Biophysical journal.

[30]  Karl Deisseroth,et al.  Ca2+-dependent regulation in neuronal gene expression , 1997, Current Opinion in Neurobiology.

[31]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[32]  K M Harris,et al.  Three-Dimensional Organization of Smooth Endoplasmic Reticulum in Hippocampal CA1 Dendrites and Dendritic Spines of the Immature and Mature Rat , 1997, The Journal of Neuroscience.

[33]  Micha E. Spira,et al.  Low Mobility of the Ca2+ Buffers in Axons of Cultured Aplysia Neurons , 1997, Neuron.

[34]  B. Sakmann,et al.  Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[35]  K. Svoboda,et al.  Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. , 1999, Science.

[36]  W. Denk,et al.  Mechanisms of Calcium Influx into Hippocampal Spines: Heterogeneity among Spines, Coincidence Detection by NMDA Receptors, and Optical Quantal Analysis , 1999, The Journal of Neuroscience.

[37]  Yasushi Miyashita,et al.  Supralinear Ca2+ Signaling by Cooperative and Mobile Ca2+ Buffering in Purkinje Neurons , 1999, Neuron.

[38]  C. Klee,et al.  Calcium as a cellular regulator , 1999 .

[39]  R. Zucker,et al.  Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. , 1999, Journal of neurophysiology.

[40]  Roberto Malinow,et al.  Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated , 1999, Nature.

[41]  R. Zucker Calcium- and activity-dependent synaptic plasticity , 1999, Current Opinion in Neurobiology.

[42]  R. Nicoll,et al.  Long-term potentiation--a decade of progress? , 1999, Science.

[43]  F. Engert,et al.  Dendritic spine changes associated with hippocampal long-term synaptic plasticity , 1999, Nature.

[44]  T. Bliss,et al.  Single Synaptic Events Evoke NMDA Receptor–Mediated Release of Calcium from Internal Stores in Hippocampal Dendritic Spines , 1999, Neuron.

[45]  N. Toni,et al.  LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite , 1999, Nature.

[46]  S W Hell,et al.  Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage. , 1999, Biophysical journal.

[47]  M. Fischer,et al.  Glutamate receptors regulate actin-based plasticity in dendritic spines , 2000, Nature Neuroscience.

[48]  M. Kennedy,et al.  Signal-processing machines at the postsynaptic density. , 2000, Science.

[49]  Bernardo L. Sabatini,et al.  Analysis of calcium channels in single spines using optical fluctuation analysis , 2000, Nature.

[50]  S. H. Lee,et al.  Differences in Ca2+ buffering properties between excitatory and inhibitory hippocampal neurons from the rat , 2000, The Journal of physiology.

[51]  前田 仁士,et al.  Supralinear Ca[2+] Signaling by Cooperative and Mobile Ca[2+] Buffering in Purkinje Neurons , 2000 .

[52]  R. Yuste,et al.  Mechanisms of Calcium Decay Kinetics in Hippocampal Spines: Role of Spine Calcium Pumps and Calcium Diffusion through the Spine Neck in Biochemical Compartmentalization , 2000, The Journal of Neuroscience.

[53]  R. Yuste,et al.  Regulation of Spine Calcium Dynamics by Rapid Spine Motility Materials and Methods , 2022 .

[54]  S. Wang,et al.  Coincidence detection in single dendritic spines mediated by calcium release , 2000, Nature Neuroscience.

[55]  A. Konnerth,et al.  NMDA Receptor-Mediated Subthreshold Ca2+ Signals in Spines of Hippocampal Neurons , 2000, The Journal of Neuroscience.

[56]  B. Sakmann,et al.  Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex , 2000, The Journal of physiology.

[57]  K. Svoboda,et al.  Estimating intracellular calcium concentrations and buffering without wavelength ratioing. , 2000, Biophysical journal.

[58]  Suk-Ho Lee,et al.  Kinetics of Ca2+ binding to parvalbumin in bovine chromaffin cells: implications for [Ca2+] transients of neuronal dendrites , 2000, The Journal of physiology.

[59]  K. Svoboda,et al.  Ca2+ signaling in dendritic spines , 2001, Current Opinion in Neurobiology.

[60]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[61]  William Holmes,et al.  Models of Calmodulin Trapping and CaM Kinase II Activation in a Dendritic Spine , 2004, Journal of Computational Neuroscience.