TiSeG: A Flexible Software Tool for Time-Series Generation of MODIS Data Utilizing the Quality Assessment Science Data Set

Time series generated from remotely sensed data are important for regional to global monitoring, estimating long-term trends, and analysis of variations due to droughts or other extreme events such as El Nintildeo. Temporal vegetation patterns including phenological states, photosynthetic activity, or biomass estimations are an essential input for climate modeling or the analysis of the carbon cycle. However, long-term analysis requires accurate calibration and error estimation, i.e., the quality of the time series determines its usefulness. Although previous attempts of quality assessment have been made with NOAA-AVHRR data, a first rigorous concept of data quality and validation was introduced with the MODIS sensors. This paper presents the time-series generator (TiSeG), which analyzes the pixel-level quality-assurance science data sets of all gridded MODIS land (MODLand) products suitable for time-series generation. According to user-defined settings, the tool visualizes the spatial and temporal data availability by generating two indices, the number of invalid pixels and the maximum gap length. Quality settings can be modified spatially and temporally to account for regional and seasonal variations of data quality. The user compares several quality settings and masks or interpolates the data gaps. This paper describes the functionality of TiSeG and shows an example of enhanced vegetation index time-series generation with numerous settings for Germany. The example indicates the improvements of time series when the quality information is employed with a critical weighting between data quality and the necessary quantity for meaningful interpolation.

[1]  A. P. Cracknell,et al.  Microwave measurement of rain and sea surface temperature by the TRMM Microwave Imager (TMI) , 2002 .

[2]  D. Roy,et al.  The MODIS Land product quality assessment approach , 2002 .

[3]  John R. G. Townshend,et al.  Global data sets for land applications from the Advanced Very High Resolution Radiometer: an introduction , 1994 .

[4]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[5]  A. Huete,et al.  MODIS VEGETATION INDEX ( MOD 13 ) ALGORITHM THEORETICAL BASIS DOCUMENT Version 3 . 1 Principal Investigators , 1999 .

[6]  Markus Neteler,et al.  Time Series Processing of MODIS Satellite Data for Landscape Epidemiological Applications , 2005 .

[7]  N. El Saleous,et al.  AVHRR Land Pathfinder II (ALP II) data set: Evaluation and inter-comparison with other data sets , 2003 .

[8]  D. Legates,et al.  Crop identification using harmonic analysis of time-series AVHRR NDVI data , 2002 .

[9]  J. Townshend,et al.  Global land cover classi(cid:142) cation at 1 km spatial resolution using a classi(cid:142) cation tree approach , 2004 .

[10]  C. O. Justice,et al.  Improvements in the global biospheric record from the Advanced Very High Resolution Radiometer (AVHRR) , 2000 .

[11]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[12]  Christian Töttrup,et al.  Mapping long-term changes in savannah crop productivity in Senegal through trend analysis of time series of remote sensing data , 2004 .

[13]  Jesslyn F. Brown,et al.  Development of a land-cover characteristics database for the conterminous U.S. , 1991 .

[14]  E. F. Ledrew,et al.  ARMA time series modelling of remote sensing imagery: A new approach for climate change studies , 2002 .

[15]  Edwin W. Pak,et al.  An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data , 2005 .

[16]  D. Roy,et al.  An overview of MODIS Land data processing and product status , 2002 .

[17]  S. Running,et al.  Global Terrestrial Gross and Net Primary Productivity from the Earth Observing System , 2000 .

[18]  Per Jönsson,et al.  Seasonality extraction by function fitting to time-series of satellite sensor data , 2002, IEEE Trans. Geosci. Remote. Sens..

[19]  Compton J. Tucker,et al.  From El Niño to La Niña: Vegetation Response Patterns over East and Southern Africa during the 1997-2000 Period. , 2002 .

[20]  Molly E. Brown,et al.  Evaluation of the consistency of long-term NDVI time series derived from AVHRR,SPOT-vegetation, SeaWiFS, MODIS, and Landsat ETM+ sensors , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[21]  R. Lunetta,et al.  Land-cover change detection using multi-temporal MODIS NDVI data , 2006 .

[22]  A. Strahler,et al.  Monitoring vegetation phenology using MODIS , 2003 .

[23]  Christopher Conrad,et al.  Generation and Assessment of MODIS Time Series using Quality Information , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[24]  Jin Chen,et al.  A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter , 2004 .

[25]  Christopher Conrad,et al.  Mapping regions of high temporal variability in Africa , 2006 .

[26]  C. Justice,et al.  A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part II: The Generation of Global Fields of Terrestrial Biophysical Parameters from Satellite Data , 1996 .

[27]  Stefan Erasmi,et al.  ENHANCED FILTERING OF MODIS TIME SERIES DATA FOR THE ANALYSIS OF DESERTIFICATION PROCESSES IN NORTHEAST BRAZIL , 2006 .

[28]  A. Huete,et al.  MODIS Vegetation Index Compositing Approach: A Prototype with AVHRR Data , 1999 .

[29]  A. Belward,et al.  The Best Index Slope Extraction ( BISE): A method for reducing noise in NDVI time-series , 1992 .

[30]  Alan H. Strahler,et al.  The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research , 1998, IEEE Trans. Geosci. Remote. Sens..

[31]  Eric F. Lambin,et al.  Change Detection at Multiple Temporal Scales: Seasonal and Annual Variations in Landscape Variables , 1996 .

[32]  William Teng,et al.  NASA GES DISC On-line Visualization and Analysis System for Gridded Remote Sensing Data , 2005 .

[33]  B. Holben Characteristics of maximum-value composite images from temporal AVHRR data , 1986 .

[34]  Pol Coppin,et al.  Digital change detection methods in natural ecosystem monitoring: a review , 2002 .

[35]  C. Long,et al.  Global distribution of cloud cover derived from NOAA/AVHRR operational satellite data , 1991 .

[36]  R. DeFries,et al.  Detecting Long-term Global Forest Change Using Continuous Fields of Tree-Cover Maps from 8-km Advanced Very High Resolution Radiometer (AVHRR) Data for the Years 1982–99 , 2004, Ecosystems.

[37]  Steven W. Running,et al.  Comparisons of land cover and LAI estimates derived from ETM+ and MODIS for four sites in North America: a quality assessment of 2000/2001 provisional MODIS products , 2003 .

[38]  Stefan Dech,et al.  Time Series Generator - Ein flexibles Softwaremodul zur Generierung und Bewertung von Zeitserien aus NASA MODIS Datenprodukten , 2005 .

[39]  John L. Dwyer,et al.  Multi-platform comparisons of MODIS and AVHRR normalized difference vegetation index data , 2005 .

[40]  Carsten Brockmann Demonstration of the BEAM Software A Tutorial for making Best Use of VISAT , 2004 .

[41]  C. Justice,et al.  The generation of global fields of terrestrial biophysical parameters from the NDVI , 1994 .

[42]  Christopher O. Justice,et al.  Towards operational monitoring of terrestrial systems by moderate-resolution remote sensing , 2002 .

[43]  D. Lobell,et al.  Cropland distributions from temporal unmixing of MODIS data , 2004 .

[44]  N. Fomferra,et al.  BEAM - The ENVISAT MERIS and AATSR Toolbox , 2005 .

[45]  G. Henebry,et al.  Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan , 2004 .

[46]  E. Meynen,et al.  Handbuch der naturräumlichen Gliederung Deutschlands , 1953 .

[47]  Josef Cihlar,et al.  Evaluation of compositing algorithms for AVHRR data over land , 1994, IEEE Trans. Geosci. Remote. Sens..

[48]  R. Fensholt,et al.  Evaluation of AVHRR PAL and GIMMS 10‐day composite NDVI time series products using SPOT‐4 vegetation data for the African continent , 2006 .

[49]  Chris Chatfield,et al.  The Analysis of Time Series , 1990 .

[50]  Chris Chatfield,et al.  The Analysis of Time Series: An Introduction , 1981 .

[51]  G. Asner,et al.  Satellite observation of El Niño effects on Amazon Forest phenology and productivity , 2000 .

[52]  IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 34. NO. 4, JULY 1996 Universal Multifractal Scaling of Synthetic , 1996 .

[53]  W. Verhoef,et al.  Reconstructing cloudfree NDVI composites using Fourier analysis of time series , 2000 .

[54]  D. Diner,et al.  Surface albedo retrieval from Meteosat: 2. Applications , 2000 .

[55]  S. Kalluri,et al.  The Pathfinder AVHRR land data set: An improved coarse resolution data set for terrestrial monitoring , 1994 .

[56]  Limin Yang,et al.  Development of a 2001 National land-cover database for the United States , 2004 .